
UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND

COMPUTING

MASTER THESIS num. 592

A Dynamic and Elastic
Publish-Subscribe Service for the

Cloud Environment
Eugen Rožić

Zagreb, March 2017.

Umjesto ove stranice umetnite izvornik Vašeg rada.

Da bi ste uklonili ovu stranicu obrišite naredbu \izvornik.

Hvala mentorici Ivani Podnar Žarko na vremenu, dostupnosti i entuzijazmu bez

kojeg ovaj rad nebi bio ni približno ovoliko koristan i zanimljiv.

Hvala takod̄er i znanstvenom novaku Aleksandru Antoniću na dobrom društvu i

savjetima te znanstvenom novaku Valteru Vasiću na tehničkoj podršci.

Najviše od svega hvala Mariji Brbić bez koje bi izrada ovog rada bila beskonačno

dosadnija i tmurnija.

iii

CONTENTS

1. Introduction 1

2. Publish-Subscribe communication 3
2.1. Matching . 5

2.2. The BE-Tree algorithm . 6

3. The “Cloud computing” paradigm 10

4. State-of-the-art in cloud-based publish-subscribe systems 13

5. Description of the developed system 17
5.1. Matching and subscription management 17

5.1.1. Subscription operators . 18

5.2. System architecture . 20

5.3. Subscription and publication processing 25

5.4. Load balancing . 29

5.4.1. Splitting of Matchers . 30

5.4.2. Merging of Matchers . 31

6. Implementation of the developed system 33
6.1. Common classes . 33

6.2. BE-Tree implementation . 36

6.2.1. The Cnode class . 39

6.2.2. The ProxyPnode class . 42

6.3. Broker implementation . 47

6.3.1. The “CloudBroker” component 49

6.3.2. The “MessageReceiver” component 50

6.3.3. The “DeliveryService” component 51

6.3.4. Matchers . 52

iv

7. Experimental evaluation 55
7.1. Performance evaluation of the centralised versions 57

7.2. Performance evaluation of the cloud versions 59

8. Conclusion 65

Bibliography 67

A. The format of the configuration files 69

v

1. Introduction

In today’s world, people with as much as a computer and a connection to the Internet

have access to huge amounts of information that are being created every second, mostly

as users of various services and applications. Not only do users have access to vast

amounts of information, but they are often either bombarded with it or it is presented

to them in a manner that doesn’t match their interests, which then generates a negative

user opinion of those services and applications. The interest of information providers

is, naturally, to have satisfied users, and for that they have to try to offer personalized

information to each of them.

Another side of the information supply and demand problem is that today almost

anyone can afford a mobile device that only resembles a cell phone, but is actually

more of a general-purpose computer (a so-called smartphone). The speed of today’s

mobile networks, combined with the low cost of bandwidth and the capabilities of

mobile devices, gave rise to a trend of users being online all the time. Users now

expect information to be delivered to their mobile devices as soon as possible (in real-

time), and they also expect information providers to take into account current user

context, e.g., a user’s current location, when delivering the content.

A user’s mobile device also became a useful source of information for other users or

the applications and services themselves. That information ranges from user location

to anything that a sensor in the user’s BAN1 network can measure and send to the

user’s mobile device via a communication protocol like Bluetooth. The result of all

these circumstances and technological advances is a huge amount of users that can be

online all the time, but can also go offline at any time, a huge amount of data that

flows through the system, both to and from the users, and streams of data that can be

generated in real-time and have to be processed in real-time.

One of the more popular approaches to the aforementioned problem of personal-

ized information is the publish-subscribe communication model, which enables users

1BAN - Body Area Network

1

to define their interests, and receive, in real-time, the information that satisfies their

interests whenever they are online. It also enables users to easily be both receivers

and publishers of information. The problems of processing huge amounts of informa-

tion and managing large numbers of users are often solved with the currently popular

cloud computing paradigm. The purpose of this master thesis is to explore the publish-

subscribe communication model and the cloud computing paradigm, and to develop an

elastic and dynamic service, based on the two technologies, that would be a model for

efficient handling of the described challenges.

The thesis is organised as follows. Chapter 2 gives an overview and describes the

basic features of the publish-subscribe communication model. It also provides a more

detailed section on the BE-Tree algorithm which was used in the developed system.

Chapter 3 explains the basics of the cloud computing paradigm. Chapter 4 previews the

state-of-the-art in cloud-based publish-subscribe systems. Chapter 5 gives a detailed

description of the architecture of the developed system, along with the algorithms used

in it, while Chapter 6 explains the implementation details. The thesis ends with an

analysis of the performed experimental evaluation followed by a conclusion.

2

2. Publish-Subscribe communication

The Publish-subscribe communication model is, in essence, a messaging pattern that is

based on the idea that information destinations are not interested in all the information

available, but only information that satisfies certain constraints, and that information

sources do not necessarily need to know exactly who receives the information they are

sending, as long as it is received by the ones who need and/or want it. Information

sources are called publishers, because they give out information into the system with-

out knowing who exactly will receive it. In one word, they publish it. Information des-

tinations are called subscribers, because they express their interests for certain types

of information they want to receive by making simple, continuous queries over the

system. In one word, subscriptions. The communication between publishers and sub-

scribers is persistent and asynchronous. This enables a subscriber to be disconnected

while remaining registered, which means that messages matching the subscriber’s sub-

scriptions will be saved and delivered to it as soon as it reconnects.

The process of comparing messages to defined subscriptions is called publication

matching, and is explained in more detail in Section 2.1. Publish-subscribe systems

can be categorized by the type of constraints that subscriptions define. The two most

common types of publish-subscribe systems are: topic-based and content-based. In

topic-based systems, publications are published to named logical channels, i.e. top-

ics, while subscribers are subscribed to certain topics, and receive all the publications

that belong to those topics. In content-based systems, subscribers define subscriptions

as collections of constraints on the attributes and/or content of publications, and they

receive all publications that satisfy those constraints. Publishers can publish two dif-

ferent types of publications: structured and unstructured. Structured publications are

essentially data that has values assigned to named attributes, while unstructured publi-

cations consist of “raw” data like, for example, a piece of text.

A common entity in the topologies of publish-subscribe systems is a broker - an

intermediary to which publishers post publications and subscribers register subscrip-

tions. Usually brokers perform the task of publication matching, and are used to store

3

publications in queues for local subscribers that are temporarily disconnected. In dis-

tributed systems they also route publications from one broker to the other on their path

from the originating publishers to all the subscribers. Brokers are the main components

of a publish-subscribe system, and they enable the scalability of the system.

The main advantages of the publish-subscribe messaging pattern are loose cou-

pling and scalability. Loose coupling of system components that are communicating

means that they do not have to be aware of each other or the system topology in or-

der to communicate. That allows the system topology to be dynamic, and information

sources and destinations to be independent of each other. The loose coupling prop-

erty enables publish-subscribe systems to be scalable, because they can be seamlessly

distributed over different kinds of large networks. Moreover, in such architectures par-

allelization of operations can be easily implemented, and message caching is natively

supported. However, the scalability deteriorates when publish-subscribe communica-

tion is used in a tightly-coupled, high-volume enterprise environment where the system

is, for example, a data center with thousands of servers sharing the publish-subscribe

infrastructure. In those cases problems like instability in the throughput, slowdowns,

and IP broadcast storms may appear. The use of the publish-subscribe architecture in

these circumstances is currently a research challenge.

Systems based on publish-subscribe also lack stronger properties on an end-to-

end communication basis, like the guarantee of delivery (there is no way a subscriber

can notify a publisher) and information about other entities (a publisher can’t find

out if a subscriber has failed or crashed), but there are a lot of systems where those

properties are traded for the advantages of a loosely coupled system, or a service that

enables users to specify their interests and receive only information that satisfies them,

reducing the overall communication cost.

The publish-subscribe communication model is a sibling to the message queue

model. They are usually both supported by message-oriented middleware like the Java

Messaging System (JMS), which was among the first to offer those communication

models more than a decade ago. Today, publish-subscribe is a well established com-

munication model for push-based dissemination of data. It is most often used for

efficient messaging in real-time, because it has the ability to process large amounts of

data due to simple subscription languages and efficient matching algorithms. This is

why publish-subscribe is almost exclusively used as the communication platform for

the increasingly popular and important Data Stream Processing, which is defined as “a

novel computing paradigm particularly suited for application scenarios where massive

amount of data must be processed with small delay,” in [3]. The authors of the arti-

4

cle add that: “Rather than processing stored data like in traditional database systems,

SPEs1 process tuples on-the-fly. This is due to the amount of input that discourages

persistent storage and the requirement of providing prompt results,” which perfectly

fits the publish-subscribe communication model.

2.1. Matching

Matching a publication against a set of subscriptions is computationally the most de-

manding task in a publish-subscribe system, and therefore limits its runtime perfor-

mance and throughput, especially in centralised systems. Due to that fact, matching

algorithms and supporting data structures are one of the focuses of research when it

comes to publish-subscribe systems and data stream processing.

There are different approaches to the matching problem. Some of the approaches

focus on finding better subscription indexing structures that would support faster match-

ing algorithms, while other approaches try to optimize algorithms for specific systems

or situations, building their solutions on assumptions which make the matching process

simpler, or focus on taking advantage of the abilities of special hardware like graphical

processing units [6], [1]. Also, a special case that is of high current interest is tak-

ing into account the information about the location of a subscriber. A location-based

publish-subscribe system should support subscriptions that use location information

and that are constantly changing because the subscriber is mobile. For this use struc-

tures like R-trees [5] and its variations can be used for subscription indexing. An

example of location-based publish-subscribe matching is proposed in [1].

Current matching algorithms can be roughly divided into two main categories:

counting-based and tree-based approaches. Another possible categorization can be

to key-based and non key-based approaches, where the former use sets of subscription

constraints as identifiers of individual subscriptions.

Counting-based approaches are based on the idea of reducing subscription con-

straint evaluations by building an inverted index over all unique subscription con-

straints, while tree-based methods try to achieve the same thing by recursively dividing

the search space on encountering unsatisfiable constraints, and therefore eliminating

evaluation of whole subsets of subscriptions.

Most of the currently developed matching algorithms have problems with either

1SPE - Stream Processing Engine

5

scaling to large numbers of subscriptions, high dimensionality of subscription space,

or dynamicity of the subscriptions. Most of them successfully deal with two out of the

three stated matching aspects, which makes their performance satisfiable for use in a

wide variety of applications where the third aspect is not very relevant. However, in

a general-purpose publish-subscribe system all three aspects should be addressed and

dealt with. There are perhaps only a few algorithms that rise to that challenge, and

BE-Tree is one that has been very recently developed, and has seemingly generated

some very good results and an interest among researchers.

2.2. The BE-Tree algorithm

The BE-Tree data structure and matching algorithm, described in [8], is based on the

idea of exploiting the discreteness and finiteness of the many-dimensioned attribute

space which is usually present in (stream) data processing systems for which the BE-

Tree is intended, e.g., publish-subscribe or complex event processing (CEP) systems.

Each possible subscription attribute represents one dimension, and the domain of each

dimension is the set of all possible values the attribute that represents that dimension

can assume. BE-Tree is a dynamic structure, which means that it supports inserting and

removing of expressions during it’s use, and even adaptation to the workload changes.

The only restrictive requirement of the BE-Tree design is that, in order for it to exploit

the discreteness and finiteness of the attribute space, all possible attributes used in the

system, along with all their allowed values, have to be known and listed before using

the system, and have to be known to all the clients of the system.

The BE in BE-Tree stands for “Boolean Expression”. Boolean expressions are

universal entities which can be used to accurately represent objects of various (stream)

data processing systems, and which allow a lot of expressiveness in defining relations

among them. Generally, a Boolean expression is a conjunction of Boolean predicates,

and a Boolean predicate is a triplet consisting of a variable name (an attribute), a value

and an operator which defines the relation of the variable to the given value. For exam-

ple, in publish-subscribe systems publications represent events, actualisations of some

sort, and are as such represented by a Boolean expression in which the attribute name

of each predicate is related to its respective value by the equals operator. Subscriptions

are also represented by a Boolean expression, whose predicates define conditions on

the values of the corresponding attributes, i.e. a multi-dimensional subspace.

BE-Tree is an n-ary tree structure, in which a leaf node contains a set of Boolean

expressions, and an internal node contains partial predicate information about the ex-

6

Figure 2.1: The structure of a BE-Tree

pressions in its descendant leaf nodes. The general structure of the BE-Tree is shown

in Figure 2.1. In essence, it consists of 2 types of nodes: c-nodes and p-nodes. A third

type of node is an l-node which is the only possible leaf node of the tree, and only an l-

node contains the actual Boolean expressions stored in the tree, but since every c-node

has to have exactly one l-node it is implementationally logical to put the expressions in

a list, or a similar structure, within a c-node, and not in a separate node structure/class.

A p-node contains a single attribute name, which represents space partitioning in-

formation since all the expressions below that p-node will have an expression defined

over that attribute. A c-node is defined by a range of values of the attribute represented

by the c-node’s parent p-node. It represents space clustering information in the sense

that all the expressions below a c-node will have a predicate such that values satis-

fying that predicate will be from the range defined by that c-node. The p-nodes and

c-nodes alternate in the BE-Tree structure, and are organized in directories, namely

p-directories and c-directories. The organization of the directories is shown in Figure

2.2.

Since each c-node can only have one p-node for one attribute, the logical choice

for p-directory organization is a hash table. This greatly speeds up operations over the

BE-Tree because accessing a hash table is O(1), which means that the dimensionality

of the space is irrelevant, and is exactly why BE-Tree is perfectly suited for high-

dimensional matching. The organization of c-directories is more complex because

expressions (predicates) can both span over the entire domain of an attribute or just

a single element. A c-directory is therefore organized as a binary tree structure of

7

Figure 2.2: The structure of the BE-Tree directories

buckets. Each of the buckets represent a segment of the p-node attribute’s domain and

is joined with a c-node. The root bucket of a c-directory spans over the entire domain

of the attribute, and each bucket can have two children buckets, left and right, that span

over the first and second half of the parent bucket’s range.

The key feature of the BE-Tree is it’s two-phase space-cutting technique of build-

ing the tree. That approach significantly reduces the complexity and the level of un-

certainty of choosing an effective criterion to recursively cut the space, and to identify

highly dense subspaces. The two phases are: space partitioning and space clustering.

Space partitioning is the first space-cutting phase, and is based on the discriminative

power of an attribute in a set of Boolean expressions. The space partitioning phase is

triggered when an l-node overflows (the number of expressions in it exceeds a given

threshold level). It uses a scoring function to determine the best attribute for partition-

ing, among the ones used in the Boolean expressions of the overflowed l-node, and

then constructs a new p-node over that attribute, adds it to the p-directory, and trans-

fers all the expressions, that have a predicate defined over the chosen attribute, from

the overflowing l-node to the newly created p-node (which then places them in the ap-

propriate c-nodes in its c-directory). In order to avoid cyclic partitioning, an attribute

can be used for partitioning at most once in any path from the root node to a leaf node.

However, the space-clustering phase makes sure that a single choice of an attribute

for partitioning is enough to fully exploit its domain, and that reselection of the same

attribute lower in the tree would provide no additional benefits.

Space clustering is the second phase in the space-cutting technique, and the key part

of the BE-Tree idea, because it takes advantage of the discreteness and finiteness of a

8

dimension, and successfully deals with the “cascading split problem” described in [2].

It is basically an interval indexing algorithm that, due to the space partitioning phase,

has to deal with only a single dimension. The key issues this phase solves are mak-

ing a decision on how to cluster the domain of an attribute, and how to alternate the

two phases. The policy for making those decisions is deterministic and independent

of the insertion sequence, therefore it is completely predictable and ensures avoiding

the cascading split problem. Otherwise, dilemmas would arise over whether to further

pursue one phase or switch to the other, and whether there would be further gain in

partitioning the space over an attribute that was already chosen higher in the tree.

The basic idea is to pursue space clustering as much as possible before switching

back to space partitioning, and this is possible only because of the finiteness and the

discreteness of the attribute domains. So when the l-node of a c-node of a leaf c-

directory bucket overflows, two children buckets are created and are given the first and

second half of the parent bucket’s range. All the expressions from the overflowing

l-node, that “fit” into either the left or the right child bucket, are then transferred to

the c-node’s l-node of the child bucket they fit into. This process is repeated until a

bucket is reached that cannot be split further simply because it’s range is a single value

in the attribute domain (and that can always be achieved because the attribute domains

have to be discrete). Every new Boolean expression being inserted is always inserted

in the smallest possible existing enclosing c-directory bucket (the insertion rule). This

way maximal space clustering is achieved before resorting to space partitioning (the

forced split rule), which ensures that there can be no further gain from partitioning

and clustering over the same attribute lower in the tree. Space partitioning is therefore

triggered in two cases: 1) When an l-node of a c-node of an atomic c-directory’s bucket

overflows, and 2) When an l-node of a c-node of an already clustered (already has

children buckets) c-directory’s bucket overflows. Once a c-node of c-directory bucket

is partitioned, it cannot be removed nor be merged with its children buckets (the merge

rule). These three rules, along with the cost-based ranking function used for the BE-

Tree self-adjustment (explained in detail in [8]), are the basis of the BE-Tree, and

what makes it one of the currently best and most popular Boolean expression indexing

structures and matching algorithms.

9

3. The “Cloud computing” paradigm

Cloud computing doesn’t have a precise technical definition, but it can perhaps be

perceived as a common name for every service that offers any form of computational

resource to a user, while hiding from him/her the hardware on which it resides and the

manner in which it is achieved. This, of course, implies that access to the “cloud”,

whatever service it might offer, has to be over a network. The cloud is usually thought

of as something in the network that has an infinite amount of processing power and

other resources for which, in order to get as much of them as you want or need, you

just have to ask and maybe pay.

Clouds can be divided by type based on the network in which they are located and,

consequently, by the people who have access to their resources. Public clouds can be

accessed from a public network, usually the Internet, and everyone has access to them.

They are typically backed by server farms of huge companies, like Google, Microsoft

or Amazon, and offer various general-purpose cloud services. Private clouds can only

be accessed from private networks of the organizations that own them. A private cloud

is used inside an organization as a centralized resource for everyone, usually meant

for computationally demanding tasks. Such centralization of resources enables them

to be far more effectively used and managed than if, for example, everyone in the

organization that occasionally needs a lot of computational power buys an expensive

machine. The third basic type of clouds are the hybrid clouds. A cloud can be hybrid

in a few ways. One type of hybrid cloud is a private cloud that when in need for extra

resources gets them from a public cloud. Another type of hybrid cloud is a private

cloud that can offer some of its resources publicly or to another organization.

There are three basic cloud service models: infrastructure as a service (IaaS), plat-

form as a service (PaaS) and software as a service (SaaS). Infrastructure as a service

is based on providing the users with virtual “raw” resources, like a virtual machine,

which then the user uses any way he/she wants, and can ask for more resources or give

up using any amount of them at any time. This enables the user to have any amount

10

of general-purpose computational resources on demand, while paying for just the time

and the amount he/she used. One of the first, and certainly the most important, to offer

this kind of service model was Amazon. The company realised it had lots of compu-

tational power which was mostly only about 10% used for their purposes, and decided

to offer the rest through the Elastic Cloud Compute (EC2) web service using the IaaS

model. Later, other big companies offered similar services, like the Google’s Compute

Engine and Microsoft’s Azure Services Platform. In 2008 Eucalyptus and OpenNeb-

ula, the first open-source software for deploying private and hybrid IaaS clouds, were

released.

Platform as a service model usually offers a lot of preconfigured applications and

tools, and often a programming language and a special API for it. This kind of service

makes achieving specific purposes, for which it was made, extraordinarily easy, while

offering performance that would otherwise be either impossible or extremely expensive

to have, and at the same time charging them little in comparison to the capital costs that

would otherwise be required, and only as much as the user uses. An example of such a

service is Google’s App Engine, which is used to deploy web applications. It offers an

API for Java and Python for writing web applications, which enables very simple use

of various complex services, e.g., mail or data storage. Web applications are run inside

the cloud with only a single click of a mouse, and their requested performances are

maintained regardless of the workload using automatic scaling. A similar PaaS service

is Microsoft’s Windows Azure Cloud Services.

Software as a service model is often referred to as “software-on-demand”, and its

typical representative is the Google Apps which offers a number of web applications

that look like and act as desktop applications, but they aren’t. For example, Gmail

is a mail client which a user uses just like a desktop mail client, but the user doesn’t

know where his/her electronic mail is actually located nor does he/she have any actual

control over it.

A publish-subscribe service in a cloud would have to use an IaaS cloud service

for its functioning, or alternatively be developed in a cloud itself, because it needs

“infinite” resources to scale to any amount of workload. It needs “infinite” resources

because it will inherently have a centralised structure with only one broker, located

in the cloud, that can grow how ever much it needs and wants to. Once developed,

the publish-subscribe service itself could be viewed as either a SaaS or a PaaS cloud

service.

It could be viewed a SaaS cloud service if it would be a predefined and started web

11

application to which a user, or a device (like a sensor), can connect to. The users could

then define subscriptions or publish publications on it, and the service itself would just

do the matching and deliver notifications to the appropriate subscribers.

It could also be viewed as a PaaS if it would be a library with which a user could

setup his/her own publish-subscribe service in a cloud. In that case a user would be

given an API with which he/she could define a publish-subscribe service as he/she

wants, and then run it in the cloud as a web application.

12

4. State-of-the-art in cloud-based
publish-subscribe systems

A big part of current publish-subscribe and stream processing research is still oriented

towards distributed systems, but researchers have started to use the cloud approach

as well. It still appears not to be the mainstream approach, but there seems to be a

rise in papers that describe systems which use a cloud in various combinations with

publish-subscribe systems and stream processing engines.

One very specific use of a publish-subscribe system in combination with a cloud is

described in [10]. There a topic-based publish-subscribe system is used for updating

shared data that is located in a specially designed layered cloud. Each layer of the

cloud contains some shared data and corresponds to a topic. The users of the data in

the cloud are both publishers and subscribers. They subscribe to the topics/layers that

contain data that they want to receive updates on, and they publish the changes they

made to the data they had locally.

Another aspect of using clouds was addressed in [4] where a stream processing

engine is expanded to the cloud if necessary. Amazon’s EC2 cloud service is used as

the cloud infrastructure, and System-S from IBM is used as the basis for a parallel

stream processing engine that can dynamically create additional processing modules

to process streams in parallel. When local processing resources become low, virtual

machines can be automatically started in Amazon’s cloud and additional System-S

processing modules can be started on them. The system then becomes distributed, and

processes the same streams in parallel both locally and within the cloud. The results

of stream processing are then collected from both the local machine and the cloud, and

are merged before notifying subscribers. The problem that the paper was addressing

was the optimization of the use of cloud resources with respect to the performance

requested by an SLA1 and the cost of the used cloud resources.

1SLA - Service Level Agreement

13

Very few general-purpose cloud-based publish-subscribe solutions have been pub-

lished or architectures for such systems suggested. One example of such a system is

the BlueDove service developed at IBM [7], and another is the cloud-based publish-

subscribe service developed at the Faculty of Electrical Engineering and Computing of

the University of Zagreb as part of a master thesis [9].

BlueDove is an elastic and scalable content-based publish-subscribe service run-

ning in the cloud. It is based on a two-tier architecture of dispatcher and matcher

components, and uses a special subscription space partitioning technique that enables

it to have smart redundancy for server fault tolerance, and to exploit the skewness in

the data distribution. The dispatchers have public interfaces such that publishers and

subscribers can connect to them, and send them publications and subscriptions. Ev-

ery dispatcher is connected to all the matchers, and its only job is to forward received

publication and subscription requests to the appropriate matchers. The appropriate

matchers are found using a simple one-hop look-up, which enables dispatchers to be

very lightweight and have very high throughput.

The subscription space partitioning technique is based on splitting the domains of

each of the attributes, and assigning each matcher a part of the domain of each of

the attributes. This demands that the service has predefined allowed attributes, and

boundaries of their domains, which is the first constraint of the BlueDove system we

encounter. A predicate of a subscription is a constraint over an attribute that spans a

range of its domain. The corresponding matcher to that predicate is a matcher that was

assigned a part of the domain, of that same attribute, that covers the range of the pred-

icate. When a subscription arrives to a dispatcher, the dispatcher looks up a matcher

for each of the k predicates of the subscription, and sends a copy of the subscription to

all k of them. This way “smart” and moderate replication and server fault tolerance is

achieved. In order to reduce the amount of subscriptions to be matched, each matcher

has a separate subscription index and a publication incoming queue for the subscrip-

tions it receives based on a particular attribute. This, however, cuts down the number

of subscriptions to be matched by only a single dimension, which is not much if the

subscription space is high-dimensional.

When a publication arrives to a dispatcher, it again looks up a matcher for each of

the k attributes in the publication, but, unlike a subscription, it is not sent to all of them

but only to the least loaded one. The policy for choosing the least loaded matchers

can be simple, based only on the number of subscriptions on each of the matchers, but

also an adaptive policy is implemented that is based on the average processing time of

14

publications calculated from both their queuing times and matching times.

The main problem and overhead source of the BlueDove’s architecture is the global

view of the system that all components have to maintain. Each matcher maintains a

table with contact information and segment boundaries (for each attribute) of all the

other matchers. Those tables are periodically exchanged with log(N) randomly chosen

matchers, using a gossiping protocol. This way matcher tables are kept up-to-date, and

each dispatcher pulls the table from a randomly chosen matcher once in a while to get

an up-to-date view of the global state.

A new matcher is added to the system by contacting a dispatcher that, based on the

workloads of existing matchers, chooses a heavily loaded existing matcher and splits

each of its attribute segments into two parts. One part of each segment is assigned to

the new matcher, and the subscriptions belonging to those segments are transferred to

it. This enables elasticity and scalability of the system, but the overhead of introducing

a new matcher seems substantial, especially because it completely changes the global

picture of the system of which all components must have an up-to-date view.

University of Zagreb student Lucija Zadrija, in her master thesis [9], tried a differ-

ent approach at developing a cloud-based publish-subscribe service. Ms. Zadrija based

her publish-subscribe system on a “subscription covering forest” algorithm that orga-

nizes subscriptions into trees of mutually covering subscriptions. Since two subscrip-

tions can be such that neither covers the other, naturally one tree will not be enough

but there will be a forest of such trees where root subscriptions cover the subscrip-

tions lower in the tree. The results of testing on centralised, non-cloud-based publish-

subscribe systems, presented in Section 7.1, show that this algorithm has considerably

lower performance than the BE-Tree algorithm used in the service developed within

this thesis.

The cloud-based architecture consists of a central component called the “Proxy”,

of a component that delivers publications to subscribers, called the “Queue”, and of a

forest of matcher components. All publishers and subscribers connect to the “Proxy”

component, and it receives all publication and subscription requests that it then for-

wards to other cloud components. The whole cloud broker arranges subscriptions in

only one logical subscription forest, the roots of which are the roots of the trees of the

root matchers in the matcher forest. That one subscription forest is distributed among

matchers, that are also organized in a forest, so that each of the matchers internally

keeps its own, smaller subscription forest. The subscription trees in each matcher are

branches of the same subscription tree in its parent matcher.

15

The central, “Proxy” component contains a model of the matcher forest, which is

basically consisted of the root subscriptions of all subscription trees of the root match-

ers. When a subscription or a publication arrives, the “Proxy” component matches it

against the subscriptions in the model and sends it to the appropriate root matcher ac-

cordingly. The model of the matcher forest has to be updated as the top levels of the

subscription and matcher forests change. This model somewhat burdens the “Proxy”

component with matching and maintaining the model, which makes it a bottleneck due

to the fact that all requests to the cloud have to pass through it.

The matcher forest is self maintaining, which means that the matchers themselves

monitor their load and decide when to add more matchers to the forest, and when

to remove matchers from the forest. The load parameter is based on the amount of

matching requests, and their processing time, on a single matcher. The load parameter

is forwarded up a matcher tree so that load balancing can be achieved by splitting

matcher trees and forests resulting in new trees and forests with the load parameters as

similar as possible. When a matcher decides that it is overloaded (using a threshold) it

sends a request to the “Proxy” component to initialize a new matcher component, and

then the load balancing algorithms are run. The load balancing algorithms are quite

complicated, with many special cases, so they won’t be further explained here.

From the user perspective, the biggest difference between this publish-subscribe

service and the BlueDove is that this system allows subscriptions and publications

defined on any attributes and with any values, it is not necessary to define allowed

attributes and their domains before the starting of the service. Although this seems like

a good feature, it is worth thinking about what that actually means to a user and is it

worth any trade-off in the sense of lower efficiency. A publish-subscribe service will

probably always be made for a specific purpose, and for that purpose, whatever it is, it

probably won’t be too hard to determine the allowed attributes and their allowed values.

A system that needs to be able to process any given subscription or publication is very

hard to imagine. Even more, there could be benefits to having predefined attributes,

and their allowed values, because that could be used to warn users that they are doing

something wrong, and also help avoid accidental misspellings of attribute names or

similar human errors.

16

5. Description of the developed system

The developed system is a publish-subscribe service based on the BE-Tree algorithm

and designed for the cloud environment. Strictly speaking, it is not a cloud-based sys-

tem because it doesn’t connect to a remote cloud nor does it use remote resources.

Instead it emulates a kind of a cloud environment by using separate processes for each

component. This is logically the same as a cloud only everything happens on a single

machine. That machine acts as the whole cloud environment and its OS acts as the

cloud’s hypervisor. The role of a virtual machine (VM) is taken by a process, there-

fore a request from the service to the OS to start a new component as a new process is

logically the same as the service requesting a cloud manager to start a new VM, and

then running something on it. The developed system uses the fact that all components

are processes on the same machine to its advantage, by using the local inter-process

input and output streams for inter-component communication. The architecture of the

system is affected by that fact to a certain degree, but it is not crucial. All commu-

nication could be implemented using TCP/IP instead, with minimal influence on the

current system architecture and no influence on the algorithms and ideas that are in the

focus of this master thesis.

There are two main aspects of the developed system: matching and subscription

management as the logical part, and load and processing time management as the ar-

chitectural part. The former is concerned with subscription organization and matching

optimization, which are not affected greatly by the fact that the whole system should

be an elastic and scalable cloud-based service. The latter part deals with the elasticity

and scalability of the system.

5.1. Matching and subscription management

Subscription management and matching are handled by an implementation of a BE-

Tree (Section 2.2). A single BE-Tree manages subscriptions and performes matching

for the entire publish-subscribe broker, i.e. the entire developed system. It is a sin-

17

gle tree only logically, and not physically, because it is distributed over more than

one system component, each of which manages their own branch of the tree mostly

independent of other components. This will be explained in more detail in Section 5.2.

The implemented BE-Tree doesn’t use the Loss part of the ranking function (men-

tioned at the end of Section 2.2 and explained in detail in [8]), because the expected

gain in performance is not significant with respect to the computational overhead it

would cause. Everything else is implemented just as described in [8].

Since BE-Tree is a structure that requires discrete attributes, all allowed attributes

along with their ranges have to be defined prior to starting the publish-subscribe bro-

ker. This is done through a configuration file. There are two types of allowed attributes:

numeric and string. For numeric attributes, a lower bound, an upper bound and a step

must be defined, while for string attributes all possible values have to be listed. Ev-

ery subscription and publication entering the broker is checked against the defined

attributes. All publications that contain an undefined attribute, or an attribute with a

non-legal value, are dismissed and disregarded. Similarly, all subscriptions that con-

tain a triplet with an undefined attribute, or contain a triplet that cannot be matched (for

example a numeric operator on a string attribute, or a numeric triplet that matches only

values outside of the defined bounds for that attribute) are also disregarded. Addition-

ally, all numerical values in both subscriptions and publications are set to the nearest

whole step defined for the corresponding attribute. This improves the performance of

the BE-Tree algorithm, which is intended to work with exactly such data, but also al-

lows the system to be used with naturally continuous data discretized to the wanted

precision.

5.1.1. Subscription operators

As described in [8] a subscription is a set of triplets. A triplet consists of an attribute, a

value, and an operator that puts the given attribute and value in a relation. Each triplet

represents a logical predicate, therefore, a subscription is a conjunction of predicates

that all have to be true in order for a publication to match a subscription.

A list of supported operators, and their transformations to interval logic, as speci-

fied by [8], are given in Table 5.1.

This system has all of the operators listed in Table 5.1 implemented internally, but

offers to the user a different set of operators. The operators offered to the user for

defining a subscription are:

– LESS_THAN - a numeric operator (<)

18

Table 5.1: Operator Transformations

Operator Interval-based

i < v1 [vmin, v1 − 1]

i ≤ v1 [vmin, v1]

i = v1 [v1, v1]

i > v1 [v1 + 1, vmax]

i ≥ v1 [v1, vmax]

i ∈ {v1, · · · , vk} [v1, vk]

i BETWEEN v1, v2 [v1, v2]

– LESS_OR_EQUAL - a numeric operator (≤)

– EQUAL - both a numeric and a string operator

– GREATER_THAN - a numeric operator (>)

– GREATER_OR_EQUAL - a numeric operator (≥)

– BETWEEN - a numeric operator that takes two values, a lower and an upper

bound

– CONTAINS_STRING - a string operator that matches all strings that contain a

given string

– STARTS_WITH_STRING - a string operator that matches all strings that start

with a given string

– ENDS_WITH_STRING - a string operator that matches all strings that end

with a given string

As can be seen, the only difference is in the string operators. All string operators

(except the EQUALS operator) are internally translated to the ∈ operator. The system

does this upon all triplets defined over a string attribute of every subscription that enters

the broker, by finding all possible values of that attribute that could satisfy the predicate

defined by the triplet. Those make up the set of values of the ∈ operator (if the set is

empty the subscription is dismissed because it can never be satisfied).

This way of defining string operators is both practical and necessary. It is practi-

cal for users because those operators are natural for defining string queries, and it is

necessary because the user cannot know the order and indices of the values of a string

19

attribute (unless the user has access to the broker configuration files, which it should

not).

5.2. System architecture

The main part of all publish-subscribe systems are the brokers, to which publishers

and subscribers connect to and communicate with. The primary idea of the developed

publish-subscribe service is that it is cloud-based (in contrast to distributed, for exam-

ple) which means that there is only a single broker for all publishers and subscribers.

That broker has to be elastic and adaptive to the workload, meaning that it should be

able to process requests in parallel, and additionally be able to grow or reduce itself in

the number of components that process the requests in parallel.

An overview of the system architecture is given in Figure 5.1. There are logically

two parts of the broker - the fixed part and the dynamic part. The fixed part consists

of three components: the MessageReceiver, the DeliveryService and the CloudBro-
ker. They are created on broker startup, and have to exist during the entire lifetime of

the broker. Those three components manage the communication to and from external

entities (publishers and subscribers), and the flow of client requests and internal mes-

sages between themselves and the dynamic part of the broker. The dynamic part of the

broker consists of components called matchers, organized in a dynamic tree structure.

The only constant of the dynamic part of the broker is the RootMatcher component,

which is, like the fixed part of the broker, created on broker startup, and has to exist

during its entire lifetime.

There are two kinds of matcher components: a RootMatcher and ChildMatchers.

Each matcher component is responsible for a branch of the single logical BE-Tree

that spans the entire broker, more precisely its dynamic part. The RootMatcher is the

top matcher, its parent is the CloudBroker component. There are only two relevant

differences between the two types of matchers. One is that the RootMatcher holds the

root node of the whole BE-Tree, which is by its type a c-node, and a ChildMatcher

holds the root of the branch of the BE-Tree dedicated to it, which is by its type a p-

node. The other difference is that ChildMatchers propagate messages up the matcher

tree, while the RootMatcher is usually their “last stop”.

A parent matcher communicates asynchronously with its child using a special node

of the BE-Tree called a proxy p-node. When a proxy p-node is created, it creates a new

matcher component as a separate process, and is the only one that has the ability to

communicate with it over the standard OS input/output streams. The newly created

20

Figure 5.1: System components and their communication pathways

21

proxy p-node replaces a branch of the subtree of the BE-Tree located on the parent

matcher, and sends it to the newly created ChildMatcher component.

The existence of child matchers is transparent even to the parent matcher itself,

because they are hidden behind a seemingly regular node in the BE-Tree. Only the

proxy p-nodes are aware of the ChildMatcher components, and each of them only of

its own. This, coupled with the fact that each matcher can send UDP messages to

the DeliveryService independently of any other component, enables the system to be

loosely coupled, which means that only local information is required by each com-

ponent. None of the components has an overview of the whole system, nor can it

control it directly. This greatly reduces the architectural overhead in processing and

communication.

The CloudBroker is the central component of the system in its current design, al-

though its only function is to be a relay between the MessageReceiver, DeliverySer-

vice and RootMatcher components, and can basically be omitted in a slightly different

design. The CloudBroker component starts the other three basic components as sep-

arate processes, and is the only component that has direct access to their input/output

streams. Because of that, the only way those components can communicate with each

other is through the CloudBroker component, which reads messages from their input

streams and forwards them to the appropriate output streams.

Figure 5.2: Communication of a publisher with the cloud broker

The purpose of the MessageReceiver component is to accept connections and pro-

cess requests from publishers and subscribers. MessageReceiver accepts TCP connec-

tions from publishers and subscribers, and creates a handler object for each of them. A

handler for a subscriber is called a SubscriberForBroker, and a handler for a publisher

22

is called a PublisherForBroker. A publisher can communicate with the broker only

through the MessageReceiver component, and it can send three different messages,

as depicted in the sequence diagram in Figure 5.2. When MessageReceiver receives

a PublisherRegister message, it creates a PublisherForBroker handler object for that

publisher, which processes all subsequent requests from that publisher. A Publish-

erDisconnect message triggers the destruction of the publisher’s handle, its removal

from the MessageReceiver and the teardown of the TCP connection. The only other

message a publisher handler can process is the Publish message, which is used for

both publishing and unpublishing a publication. Upon receiving a Publish message,

the publication is saved on the MessageReceiver, and the Publish message forwarded

to the CloudBroker component, which in turn just forwards it to the RootMatcher com-

ponent, after which the matching process begins. A subscriber’s communication with

the broker is somewhat more complex, as can be seen in Figures 5.3 and 5.4. This is

because the broker has to be able to notify a subscriber about a publication at any given

time and from a different broker component, and also because a subscriber can remain

registered while not connected (which is a state not necessary for a publisher).

Figure 5.3: Communication of a subscriber with the cloud broker,

the MessageReceiver part

Upon receiving a SubscriberRegister message, the MessageReceiver component

creates a SubscriberForBroker handler object for that subscriber, which processes all

subsequent requests from that subscriber. After having done that, the MessageReceiver

23

forwards the SubscriberRegister message to the CloudBroker, which in turn forwards it

to the DeliveryService. A SubscriberDisconnect message simply puts the subscriber’s

handler object in an inactive state, not removing it from the MessageReceiver, and

is also forwarded to the DeliveryService via the CloudBroker. A SubscriberUnregis-

ter message triggers the destruction of the subscriber’s handler, its removal from the

MessageReceiver, and the teardown of the TCP connection, but is also forwarded to

the CloudBroker. The CloudBroker duplicates the message, sending one copy to the

DeliveryService and the other to the RootMatcher, because all the subscriptions of the

unregistering subscriber need to be removed from the BE-Tree upon its unregistration.

A Subscribe message, used for both subscribing and unsubscribing a subscription, is

processed by the subscriber’s handler in two steps. The first step is to simply forward

the message to the RootMatcher via the CloudBroker, and the second step is to match

the new subscription against all active publications that have entered the broker, and

send an InitialMatches message containing all the matched publications to the Deliv-

eryService via the CloudBroker.

Figure 5.4: Communication of a subscriber with the cloud broker,

the DeliveryService part

The purpose of the DeliveryService component is to receive matched publications

for registered subscribers from other broker components (mostly matchers), and to

send them to the appropriate subscribers if it is able to do so, or else to hold them

in a queue until being able to send them. The DeliveryService has a TCP connec-

tion to every connected subscriber, and a queue object for every registered subscriber.

The TCP connection to a subscriber is established, and a queue object created if the

subscriber was not already registered, when a SubscriberRegister message is received

24

from the CloudBroker, as can be seen in Figure 5.4. In this TCP connection the role

of the “server” is with the subscriber, which expects the connection request from the

broker, and messages are only sent from the DeliveryService to the subscriber without

any response. A SubscriberDisconnect message from the CloudBroker causes a tear-

down of the TCP connection to the disconnecting subscriber, but not the removal of

the queue object, which afterward accumulates publications for the subscriber until the

subscriber connects again. When the subcriber reconnects, the accumulated publica-

tions are sent to it by the DeliveryService from the matcher’s corresponding queue. A

SubscriberUnregister message destroys both the TCP connection and the queue object

of the unregistering subscriber, removing it completely from the DeliveryService. The

only remaining message the DeliveryService can receive from the CloudBroker com-

ponent is the InitialMatches message, which carries a set of publications for sending

to one subscriber and that is exactly what the DeliveryService does, it puts them all in

that subscriber’s queue object for sending. Additional to the OS level connection to

the CloudBroker and the TCP connections to the subscribers, the DeliveryService is

also a UDP server which receives UDP packets from matcher components. Each UDP

packet from a matcher contains a publication and a set of subscriber ID’s that belong to

subscribers which have a subscription that the publication matched. That publication

is sent to each of the subscribers, or put in their respective queues.

5.3. Subscription and publication processing

The reason why asynchronous communication between matchers, and consequently

parallel processing, is possible is because changes in the BE-Tree propagate only

downward. The only exception is the updating of node scores which propagates up-

ward through the tree after insertion, deletion or matching. But since the node scores

affect only the efficiency of the BE-Tree, and not its consistency, there is virtually no

effect if the score updating information comes with a delay of a few operations. Addi-

tionally, in order to reduce the communication overhead, the Loss part of the scoring

function is ignored, which means that the matching operation has no effect on the node

scores, and consequently there is no need to send any information up the tree as a

response to a matching request.

Since matchers are organized in a tree structure, it is perhaps unclear how the re-

quests are being processed in parallel. Since all the matchers hold parts of the same

BE-Tree, a single request has to be processed sequentially by the matchers in the same

branch of the matcher tree. Parallelism is enabled by the asynchronous communica-

25

tion, which allows a matcher that has processed a request and handed it down to its

child(ren) matcher(s) to immediately be able to start processing a new request. This

way multiple requests are being processed in parallel on different parts of the same

logical BE-Tree.

There are five basic requests that a BE-Tree has to be able to process: publish-

ing and unpublishing a publication, subscribing and unsubscribing a subscription, and

removing all subscriptions of a single subscriber (removing a subscriber from the BE-

Tree). These five requests are made using three different messages, each of which

every matcher component can process. They are: the Subscribe message, the Pub-

lish message and the SubscriberUnregister message. The communication inside the

matcher tree for each of the requests can be described by a sequence diagram between

a single parent and one of its children matchers, because it is the same for every parent-

child pair of matchers. The only exception is the RootMatcher, which differs only in

the part of forwarding a score update response message to its parent, because it doesn’t

have a parent matcher.

Figure 5.5: Processing of a “Subscribe” message, if the subscription was

added on the ChildMatcher

When a ChildMatcher receives a Subscribe message from its parent, it tries to add

the subscription into its BE-Tree branch. If it succeeds, it returns a SubscriptionAdded

message to its parent with the added flag set to true and carrying the new score of

26

the branch-root p-node. The exact same thing happens if the subscription should have

been added, but for some reason wasn’t. The only difference is the added flag set to

false. These scenarios are depicted in Figure 5.5. The parent matcher, upon receiving

a SubscriptionAdded message, checks if the child matcher is now empty (this makes

sense because a Subscribe message can carry an unsubscribe request). If not, it simply

updates the node scores up its local BE-Tree branch and then sends the same Sub-

scriptionAdded message to its parent, but with the new score of its branch root p-node.

This process continues up the matcher tree until it reaches the RootMatcher. If, on

the other hand, the child matcher is now empty, the parent matcher destroys it (the

process) and updates its own scores using a ChildMatcherRemoved message instead of

the subscriptionAdded message received from the former child matcher. That Child-

MatcherRemoved message is then passed to the parent’s parent matcher and upward

to the top of the matcher tree, just like the SubscriptionAdded messages. Addition-

ally, if after destroying its child matcher the parent matcher became a leaf matcher in

the matcher tree, it sends a LeafMatcher message to its parent matcher to let it know

about the change, because communication between matchers is a bit different if a child

matcher is a leaf matcher.

Figure 5.6: Processing of a “Subscribe” message, if the subscription was

forwarded down the matcher tree

The second possible case is that the subscription is not supposed to be added in the

child matcher’s BE-Tree branch. In that case, the child matcher, or more precisely the

appropriate proxy p-node, forwards the Subscribe message to another child matcher

down the matcher tree and doesn’t respond to the parent matcher. This scenario is de-

picted in Figure 5.6. Some time later the child matcher receives either a Subscription-

Added or a ChildMatcherRemoved message from the matcher it forwarded the request

27

to, and does with them the same as already described earlier and depicted in Figure

5.5, as do all the other matchers up the matcher tree to the RootMatcher.

The purpose of a SubscriberUnregister message is to remove all subscriptions of a

single subscriber from all the matcher components. Because of that, the SubscriberUn-

register message is a flooding request which means that it is sent by every matcher to

all of its children matchers, the consequence of which is that every matcher in the

matcher tree will process the same SubscriberUnregister message once it enters the

system. Since the updates of node scores have to come from the last changes in the

BE-Tree, and update messages propagate up the matcher tree to the RootMatcher, only

the leaf matchers should send a response to the SubscriberUnregister message after

having removed the appropriate subscriptions from their BE-Tree branches. A Sub-

scriberDeleted response message is processed in a similar way as a SubscriptionAdded

message. All this is shown in Figure 5.7.

Figure 5.7: Processing of a “SubscriberUnregister” message

The only remaining message a matcher component can process is a Publish mes-

28

sage. The communication between a parent-child pair of matchers following a Publish

request is shown on Figure 5.8. The Publish message is also a flooding request, but

unlike the SubscriberUnregister message, it doesn’t affect the node scores, so there is

no need for a response to it. However, there exists a response message to it because of

matcher merging needs (more about that in section 5.4), but only from the leaf match-

ers to their parent matchers, and the response is not further propagated up the matcher

tree. When a matcher receives a Publish message it starts a matching process on its

local branch of the BE-Tree, which is done recursively and returns a set of all sub-

scribers that have a local subscription that matches the given publication. When the

matching process gets to a proxy p-node, it forwards a copy of the Publish message to

the corresponding ChildMatcher and returns to continue the matching process locally.

The final result of the matching process on a matcher is, therefore, a copy of the Pub-

lish message sent to every child matcher of that matcher, and a set of subscriber IDs

that is sent to the DeliveryService component in a UDP packet along with the original

publication.

Figure 5.8: Processing of a “Publish” message

5.4. Load balancing

The elasticity and scalability of the system is achieved through the splitting and merg-

ing of matcher components. Both the splitting and the merging are triggered by the

processing times of the last N publications, where N is a parameter of the broker.

29

The problem with matcher splitting is that it cannot be done at just any point in the

BE-Tree without running into serious complications. For example, if a BE-Tree branch

could be split on any node type then a lot of implementation problems would arise, not

the least the need for different “proxy” nodes and communication protocols for each

of them. The c-nodes are not a convenient place to split a BE-Tree because they are a

part of an inner tree structure, the c-directory, which would also then have to be split

between multiple processes. Therefore, the p-nodes are a logical selection as splitting

points. However, not all p-nodes are an equally good place to split a BE-(sub)Tree

either. For example, if a subtree of a BE-Tree would be split on the second level of p-

nodes from the local subtree root, then a subsequent split at the level between would be

impossible in the current implementation without destroying some existing matchers,

because a reference to a created process cannot be transferred. Even if it could be done

with a different system design it would still give rise to merging problems, problems

with deciding on a split point, and other complications. Taking into account all of

the stated, I have realised that the simplest and the most elegant way to split a BE-

Tree branch located on a matcher is to do it on the first level p-nodes. That way

entire c-directories stay on the same component, links to child matchers are located in

hash tables (p-directories) which is also convenient, and the decision of the split point

becomes simplified and easy to make.

5.4.1. Splitting of Matchers

The splitting of a matcher is initiated when the minimal processing time in the win-

dow of N last publication matchings is greater than a given threshold, i.e. when the

processing time for all publications in the window is larger than a given threshold.

The splitting criterion defined in this way is robust with regard to sudden spikes in

processing times, which do not indicate a real overload of a processor, but is also a

bit unfortunate due to the manual setting of the threshold on broker startup and the

inability to change it during runtime.

After a Publish request has been processed and forwarded (Figure 5.9), a check

is made whether the minimal processing time in the window (including the one just

completed) is greater than the given splitting threshold. If it is, a search for a first level

p-node with the biggest matching time among all first level p-nodes in the local subtree

of the BE-Tree is started. When such a p-node is found, a proxy p-node is created that

substitutes that p-node in its parent c-node’s p-directory, and that p-node, along with

the entire subtree to which it is the root, is sent to the newly created ChildMatcher. The

30

Figure 5.9: Processing of a “Publish” message followed by a matcher splitting

final step is for the matcher to notify its parent matcher if it had stopped being a leaf

matcher after splitting. This is done by the matcher sending a LeafMatcher message.

5.4.2. Merging of Matchers

The merging of a matcher is initiated when the maximal processing time in the window

ofN last publication matchings is less than a given threshold, i.e. when all publications

in the window where processed in lower processing time than the defined threshold.

This criterion is, like the splitting criterion, chosen for its robustness with regard to

sudden spikes in processing times.

The same as with the splitting of matchers, checking of the previously described

condition is performed after a Publish request has been processed and forwarded. If

the condition is met, the matcher that wants to be merged (the ChildMatcher in Figure

5.10) sends a MatcherMerging message to its parent. A MatcherMerging message

contains the branch of the BE-Tree of the merging matcher along with other relevant

publish-subscribe information. Upon receiving a MatcherMerging message, the proxy

p-node on the receiving matcher:

1. destroys the corresponding ChildMatcher,

2. processes all requests (over the received subtree) that might have been sent to the

child matcher before it was destroyed, but didn’t have a chance to get processed,

31

Figure 5.10: Processing of a “Publish” message followed by matchers merging

3. replaces itself in the p-directory of its parent c-node with the received subtree,

4. sends a ChildMatcherRemoved message up the local BE-Tree branch, and to its

matcher’s parent matcher,

5. sends a LeafMatcher message to its matcher’s parent matcher if its matcher be-

came a leaf matcher after the merging.

32

6. Implementation of the developed
system

The entire system is implemented in the Java programming language using the Eclipse

IDE1 and the Java 1.7 JDK2. The basis for the system was an existing publish-subscribe

system developed at the Department of Telecommunications of the Faculty of Elec-

trical Engineering and Computing in Zagreb. The existing publish-subscribe system

was a distributed system with a covering forest matching algorithm. As a first step I

stripped that publish-subscribe system of all code that was redundant to me and made

it into a centralised publish-subscribe system with that same covering forest algorithm,

removing bugs and inefficient code in the process and redesigning it. Little of the orig-

inal code was left untouched, mostly interfaces and abstract classes. That centralised

system served to me as a skeleton for a centralised BE-Tree version which I used to

implement and test the BE-Tree algorithm. The centralised BE-Tree version in turn I

used as ground work for the cloud version, which is the final product, and a “primitive”

cloud version which just uses n centralised BE-Tree versions as separate matchers in

parallel. The “primitive” cloud version is used in testing for comparing results and will

be mentioned later in Chapter 7.

6.1. Common classes

The “common classes” refers to all the classes that are common to all the publish-

subscribe systems, both the centralised and the cloud versions. They are located in

a separate project (named PubSubCommon) and are pretty much a collection of in-

terfaces, abstract classes and general publish-subscribe classes like subscription and

publication implementations.

The two main packages are the hr.fer.tel.pubsub.artefact package

1Integrated Development Environment
2Java Development Toolkit

33

and the hr.fer.tel.pubsub.common package. The contents of the common

package are:

– Attribute interface - an interface defining an attribute supported by the

broker

– NumericAttribute class - an implementation of the Attribute interface for

numeric attributes (has a lower and upper bound and a discretization step)

– StringAttribute class - an implementation of the Attribute interface for

string attributes (has a list of strings and a default step of 1)

– Attributes class - a class similar to the Java Properties class that reads

a configuration file containing specification of the allowed attributes and their

allowed values and holds them in a HashMap with their names as keys and

Attribute objects as values. It also contains methods that check if a sub-

scription or a publication is correctly defined with regard to the allowed at-

tributes and prepares them for the broker to work with. This class implements

the singleton pattern and is sent to each new component by the component that

starts it.

– MinimalistLinkedHashQueue class - this is a simplistic implementation

of a doubly linked list backed up by a HashMap. It is templated and imple-

ments only the Iterable interface while offering all the standard queue op-

erations: offer, poll, peek and remove. In addition it offers the contains

method which is O(1) because of the backing HashMap and it demands a ca-

pacity at construction. These two extra features are necessary for the

SubscriberQueue class that the DeliveryService uses as queues for the

subscribers because the matching results come to the DeliveryService from un-

related matchers and there is a high chance of duplicate publications for sub-

scribers which this collection solves.

– enums.Operator enum - an enumeration listing all the possible numeric

and string operators available to a user for defining Boolean predicates. They

are listed and described in Subsection 5.1.1.

– Triplet class - this class is one of the most important basic classes. An

instance of this class represents a single Boolean predicate. It consists of a

String key, an Object value (which can be a String, a Double or a

Double[]) and a previously mentioned Operator. It’s key method is the

covers(Triplet) method which returns true if the Triplet object cov-

34

ers the given Triplet object or false otherwise. There are also convenience

methods covers(String) and covers(double) that are the same as

calling the covers(Triplet) method where the keys of triplets are the

same and the operator is EQUALS.

– UniqueObject abstract class - a class that generates a random UUID object

at construction and associates it with this object.

The artefact package contains the definitions of the primary objects that circulate

the publish-subscribe system, namely publications and subscriptions. The contents of

the package are:

– Publication abstract class - the base class for any publication implementa-

tion. It extends only the UniqueObject class and makes the start time and

the validity of a publication its obligatory information.

– Subscription abstract class - the base class for any subscription implemen-

tation. Like the Publication abstract class extends the UniqueObject

class and makes the start time and validity of a subscription its obligatory in-

formation. More importantly it defines two abstract methods: the

coversPublication(Publication) method and the

coversSubscription(Subscription) method.

– ActivePublication class - represents an active publication in the sense

of a publication that came from a publisher and is now on the broker. The class

itself extends the Publication abstract class and an instance of the class

contains another Publication object (the original) and a UUID object that

represents the ID of the publisher that published the publication.

– ActiveSubscription class - represents an active subscription in the sense

of a subscription that came from a subscriber and is now on the broker. The

class itself extends the Subscription abstract class and an instance of the

class contains another Subscription object (the original) and a UUID ob-

ject that represents the ID of the subscriber that made the subscription.

– HashtablePublication class - this is the basic (and only) implementa-

tion of a publication. The publication as a Boolean expression is in the form

of a HashMap where keys are the names of the attributes and the values are

the corresponding values of the attributes. Each key-value pair is a Boolean

predicate with an implicit EQUALS operator.

35

– TripletSubscription class - this is the basic (and only) implementation

of a subscription. The subscription is defined in terms of Triplet objects.

The Triplet objects are kept grouped by the attribute on which they are de-

fined since there can be multiple predicates defined over a single attribute. They

are kept in a HashMapwhere the keys are the attribute names and the values are

sets of Triplet objects which makes working with TripletSubscri-

ption objects very easy and practical and checking of coverage very effi-

cient. There is also an additional HashMap named stringAttributesBorders

that should be null outside of the broker and set by the Attributes class

upon checking the subscription when it enters the broker. The keys of that map

are the names of only the string attributes that have predicates defined over

them in that subscription and the values are numerical Triplet objects with

a BETWEEN operator and the indices of the lowest and highest value of the

attribute that satisfy the constraints on that attribute in that subscription.

Besides the listed and explained classes and interfaces there are also the Publish-

erInterface, the SubscriberInterface and the NotificationList-

ener interfaces in the entity package, along with the NetworkEntity abstract

class that holds the IP address, port and name of an entity and which all entities that

communicate over the TCP/IP extend. The two interfaces in the message package

that define the two basic types of messages: the Message interface (for inter-entity

communication) and the InternalMessage interface (for intra-broker communi-

cation). And various utility classes in the util package like the LogWriter class.

6.2. BE-Tree implementation

The classes that implement the BE-Tree are located in the hr.fer.tel.pubsub.

BETree package of the CloudBeTreePubSub project which is the main project

of the developed cloud-based BE-Tree publish-subscribe system. The BE-Tree classes

are practically the same as the ones used in the centralised BE-Tree publish-subscribe

version. The differences between the identically named classes are mostly in some

thread synchronization code and a few extra methods and there are only two extra

interfaces and an implementation of the proxy p-node which is essential for the cloud-

based broker. An important difference is also that the cloud-based BE-Tree nodes

are all (except the ProxyPnode) Serializable which enables them (and whole

36

branches of the BE-Tree) to be easily transferred between processes.

The contents of the hr.fer.tel.pubsub.BETree package are:

– BETreeParams class

– BETreeActiveNode interface

– CdirBucket class

– Cnode class

– Pnode interface

– RealPnode class

– ProxyPnode class

The BETreeParams class extends the Java Properties class and is used to

load BE-Tree parameters from a file and keep them saved. This class uses the singleton

pattern and is transferred to each component started in a new process by the component

starting it (the same as the Attributes class described in the previous section).

The BETreeActiveNode interface defines the methods that a BE-Tree node has

to implement. Those are:

– findMatchingSubscribers - does the matching and returns the time that

was required to complete it (in nanoseconds). The return time is necessary for

the splitting and merging criteria.

– insert - tries to inserts the given subscription in the BE-Tree. It can return

SUB_ADDED, SUB_NOT_ADDED (duplicate for example) and

SUB_FORWARDED which are integer constants defined in the

BeTreeParams class.

– remove - tries to remove the given subscription from the BE-Tree. It can

return SUB_REMOVED, SUB_NOT_REMOVED (non existent for example)

and SUB_FORWARDED which are also integer constants defined in the

BeTreeParams class.

– deleteSubscriber - removes all subscriptions of the given subscriber from

the BE-Tree.

– isEmpty - returns true if the node has no descendants and holds not subscrip-

tions.

37

– scoreUpdateToTop - updates the score of the node and then calls the same

method on its parent node.

– highestMatchingTimePNode - its function is to find a first level p-node

(from the level of the first caller) that has the greatest last matching time.

The Pnode interface extends the BETreeActiveNode interface with a few

more methods that are specific for p-nodes. The interface is necessary because two

different p-node implementations were necessary, namely the RealPnode and the

ProxyPnode. The two relevant methods defined by this interface are the getScore

method and the getMatchingTime method. The first method returns the score of

the p-node while the second returns the time it took to match a publication against the

subtree below that p-node the last time it was done (in nanoseconds).

The RealPnode class is, as its name states, the implementation of a p-node as

described in the BE-Tree article [8] and it, of course, implements the Pnode inter-

face. It is a fairly simple class that in its constructor creates a new CdirBucket that

becomes the root of the c-directory. Almost all it’s methods just delegate the work to

the same-named methods of the c-directory’s root CdirBucket. Some of them in

addition call the updateScore synchronized method which is practically the only

method in the RealPnode that doesn’t act like the others. This method calls the

retrieveAndSumScores method of the CdirBucket, which sums the scores of

all the c-nodes in the c-directory, and then calculates the score using the formula from

the BE-Tree article.

The CdirBucket class represents a “bucket” of the c-directory. This class imple-

ments the BETreeActiveNode and the Serializable interfaces. The serializa-

tion is straightforward and requires no special care since all the class fields are also of

types that implement the Serializable interface. All the BETreeActiveNode

methods are implemented simply by calling the method with the same name on the

bucket’s Cnode object and then on its left and right child CdirBucket objects

(if they exist) and combining the three results in a logical way. The only exception

is the scoreUpdateToTop method which just calls the equally named method on

the bucket’s parent. In addition to the methods defined by interfaces there are a few

more methods, the most important of which is the spaceClustering method im-

plementing the second phase of the space-cutting technique described in [8]. The

38

implementation of the space clustering is fairly straightforward. If the child c-node

is overflowing and the bucket is a non-atomic, non-leaf bucket then it creates two

CdirBucket objects, each with half of its range, and transfers subscriptions that can

fit in the new buckets from its c-nodes l-node to theirs. The process is finished by call-

ing the spacePartitioning method of its Cnode and the spaceClustering

methods of its new children CdirBuckets. If the bucket is atomic or is already not a

leaf node then just the spacePartitioning method of the child Cnode is called.

The information that defines a c-directory bucket is an attribute and a range of

the attribute’s domain. From this information a Triplet object with a BETWEEN

operator is created in the CdirBucket’s constructor. The value of that triplet is a pair

of lower and upper bound values of the attribute range, where the values are numbers

rounded to the nearest step for a numeric attribute or indices of string values for a string

attribute. This Triplet object is then saved in the class field named attrRange and

is added to the key HashMap (received by the constructor) under the attribute’s name,

which is then passed to the constructor of the child Cnode. The main purpose of the

attrRange Triplet object is to simplify and optimise the encloses methods that

check if a publication or a subscription are enclosed by the bucket’s range on the same

attribute. For a publication this is done by simply calling the Triplet.covers

method of the attrRange with the value of the corresponding attribute of the publication

sent as an argument of the method. For a subscription check its stringAttributeBorders

map (described earlier under TripletSubscription in Section 6.1) is used if

the attribute is a string attribute. In that case simply the Triplet.covers method

of the attrRange is called on the value assigned to the attribute in question in the

stringAttributeBorders map. If the attribute is numeric then the same method is simply

called on all predicates defined over the attribute in question in the subscription that is

being checked.

6.2.1. The Cnode class

The Cnode class is an implementation of the c-node as described in [8] together with

the l-node which is implemented as a list of ActivePublication objects in a

Cnode object. It implements all methods specified by the BETreeActiveNode

interface as well as other methods required by the algorithm description in [8] (for both

c-nodes and l-nodes) like the spacePartitioningmethod that does the first phase

of the BE-Tree space-cutting technique, the highestScoreUnusedAttribute

method that finds the best attribute to partition on, the updateLnodeCapacity

39

method that updates the maximum capacity of an l-node if partitioning is impossible

or infeasible, and the methods for updating the score of a c-node. A Cnode object also

contains a HashMap of Triplet objects mapped to attribute names called the key.

This map is filled by CdirBucket objects up the tree, one in each c-directory, and

constitutes not only a unique key of the Cnode but also a set of predicates that each

of the Boolean expressions (subscriptions) in this node and every node down the tree

from this node has to satisfy. This key is used to very efficiently check for subsumed

Boolean expressions which influence the score of a c-node in a different way then all

the other Boolean expressions, as described in [8].

Since the BETreeActiveNodemethods of the Cnode class do most of the work

in a BE-Tree and the class functionality differs from the c-node functionality described

in the BE-Tree article, a list of the most important methods of the class is given along

with short descriptions of each of them:

– findMatchingSubscribers - first the subscriptions in the list represent-

ing the l-node are matched and appropriate subscriber IDs added to the result

set. The l-node matching time is measured using the System.nanoTime

method. After the “local” matching the findMatchingSubscribers

method of each of the p-nodes from the p-directory is called and their matching

time added to the “local” matching time before returning the overall matching

time.

– insert - finds the p-node with the highest score and tries to add the subscrip-

tion down its branch. If the adding fails for some reason or there is no such

p-node the subscription is added to the list representing the local l-node. If the

l-node overflows after the adding the space clustering is called on the c-nodes

parent CdirBucket object else just the node score is updated.

– remove - tries to remove the subscription from the local l-node list. If the sub-

scription isn’t found locally the removemethod of the Pnode objects in the p-

directory is called in some order until one of them returns the SUB_REMOVED

constant. If the node has been removed from the local BE-Tree subtree the node

score is updated (otherwise it will be updated upon receiving a message from a

child matcher).

– deleteSubscriber - removes all subscriptions with given subscriber UUID

from the local l-node and then calls the deleteSubscribermethod of each

of the Pnode objects in the p-directory. When all removing is done the node

score is updated.

40

– spacePartitioning - after insertion into the local l-node this method

checks if the l-node has overflown. As long as it is overflown the partition-

ing is done such that the best attribute to partition by is found using the

highestScoreUnusedAttribute method after which a new

RealPnode is constructed with that attribute and placed in the p-directory.

The new p-node is filled with subscriptions from the local l-node that have a

predicate defined over the new p-node’s attribute which are at the same time

removed from the local l-node. After the partitioning is finished the score of

the node is updated.

– highestScoreUnusedAttribute - this method simply counts the num-

ber of subscriptions that have a predicate defined over an attribute and then

returns the attribute with the biggest such count. The attributes contained by

the key of Cnode and the ones that were already used for partitioning are of-

course excluded.

– updateLnodeGain - this method calculates the Gain part of the score of

the l-node using the following formula:

Gain(lj) = (1− β)(#subsumed) + β(#covered) (6.1)

where “subsumed” stands for predicates of the Boolean expressions in the l-

node that are exactly matched by the predicates in the key of the c-node and

“covered” stands for all the other predicates covered by the key. The β factor is

a BE-Tree parameter between 0 and 1.

– updateLnodeScore - the score of an l-node is given by the following for-

mula:

Score(lj) = (1− α)Gain(lj)− αLoss(lj) (6.2)

but since the Loss part of the score is always 0 in this implementation then the

score of an l-node is practically just its Gain part.

– updatePnodeScores - this method just sums up the scores of all Pnode

objects in the p-directory. It is synchronized on the Cnode object because it can

be called by different threads, the thread of the matcher and a ProxyPnode’s

thread.

– updateCnodeScore - this method calculates the overall score of a c-node

which is reduced to just the sum of the results of the updatePnodeScores

and updateLnodeScore methods because of the lack of the Loss part of

41

the scoring formula. Like the updatePnodeScores method this method is

also synchronized for the same reason.

– scoreUpdateToTop - this method is called by a ProxyPnode located in

the p-directory of the Cnode object and is the only method that goes “up the

tree”. It causes this c-node to update its score and then calls the same method

of this c-nodes parent node and continues like that until it reaches the root node

of the BE-Tree (sub)tree. In the root node instead of calling the same method

on the node’s parent node (which is a null reference) the method calls the

notifyParentMatcher method of the matcher the node is located on.

– highestMatchingTimePNode - since this method has to find a first-level

p-node (counting from the first caller) with the highest last matching time it

only traverses the collection of Pnode objects of the p-directory and calls their

getMatchingTime methods to get the required information.

6.2.2. The ProxyPnode class

The ProxyPnode is a very specific class which links the two otherwise independent

main aspects of the project - the logical BE-Tree part and the architectural matcher

tree part. It is formally a part of the BE-Tree but does none of the BE-Tree’s functions.

Instead it creates a new matcher component that only it can directly communicate with

and then delegates all the BE-Tree requests it receives from its parent c-node to its

ChildMatcher by sending it messages via the standard OS process input stream.

The class implements the Pnode interface to be able to be put in a p-directory of a

Cnode object but has a number of methods that return always the same result or even

throw an UnsupportedOperationException. For example, the isEmpty

method always returns false and the getMatchingTime method always returns

0 while the scoreUpdateToTop and highestMatchingTimePNode methods

throw an exception because it makes no sense to call those methods on a ProxyPnode

and that should never happen.

There is also a subclass similar to the InternalCommunicationsThread of

the component implementations (explained later in Section 6.3) called the

ChildCommunicationsThread. An instance of this subclass is created when the

child matcher is created and is started in a new Thread object that keeps running as

long as the child matcher process is alive. Its purpose is to constantly read the input

stream from the child matcher and process any messages that the child matcher sends

up the matcher tree.

42

Being a transparent interface between the BE-Tree inside of a matcher and its child

matcher located in a different process the ProxyPnode class is the most sensitive

and complicated part of the system. It has to deal with complicated issues such as

multiple threads making changes to the same BE-Tree nodes and the child matcher

being merged while some requests have already been sent. All of this required extreme

care and complicated synchronization solutions.

The first thing that needed to be observed is that communication with a child

matcher is different depending on whether the child matcher is a leaf matcher in the

matcher tree. The first reason for that are messages like the SubscriberUnreg-

isterMessage that flood the matcher tree but only a leaf matcher should send a

reply to them. But the far more important reason is the merging of matchers which can

happen only if the child matcher is a leaf matcher.

If the child matcher is a leaf matcher the matcher merging process can begin at any

given time as a response to a message from the child matcher. The important thing to

note here is that the methods that send messages to the child matcher are called from

inside the current matcher’s BE-Tree, which means by the main matcher thread, while

the methods that run the merging process are called by the thread that receives the

messages from the child matcher. This means that when the merging process begins

sending messages to the child matcher has to somehow be blocked. Since the only

common point of those actions is the ProxyPnode itself it makes sense to make all

the methods that send messages to the child matcher and the method that does the

merging of matchers synchronized on a ProxyPnode object.

This however doesn’t solve another important issue. Since the communication

between matchers is asynchronized the child matcher’s responses to a request come

with a delay in which the current matcher is free to send more messages to the child

matcher. Since the child matcher is located in a completely different process those

messages are sent and buffered in the process’s input stream regardless of whether the

child matcher processes them or not. Therefore all the messages sent to a child matcher

in the time between the message that causes it to merge and the initiation of the merging

process by the ProxyPnode would be lost which is unacceptable. The solution to

this problem is a message queue in the ProxyPnode class that will save all messages

sent to the child matcher and remove them from the queue upon receiving a response.

This however requires a child matcher to respond to every request it receives, which

is not generally necessary, and is no good if the child matcher is not a leaf matcher

because most responses are forwarded all the way to the RootMatcher component and

so responses from different matchers can be mixed in a single ProxyPnode. Luckily

43

there is no need for a message queue in a ProxyPnode if its child matcher is not a leaf

matcher for the reasons already explained. So the compromise is made that only leaf

matchers must respond to every request they receive and those additional responses are

not forwarded up the matcher tree. The only complication now is the turning of the

message queue on and off as the child matcher can stop being a leaf matcher and also

become a leaf matcher again if it wasn’t for a certain period of time. That problem

is fixed with some thread synchronization and a variable for message synchronization

which will be explained later in some more detail.

In the following text the constructor and some of the more important methods of

the class will be described in order for the reader to better understand the solutions

to the just mentioned problems. After that an overview of the actions triggered by

messages from the child matcher will be given which will complete the description of

the ProxyPnode class.

The constructor of the class receives a RealPnode as an argument. That object

represents not only a single node but the whole BE-Tree branch “below” it by refer-

ence. The constructor then creates a new process on the operating system by doing an

equivalent of calling “java -cp <classpath> hr.fer.tel.pubsub.

entity.broker.ChildMatcher <args>” on the command line where the

“<classpath>” part is taken from the current matcher (which it received from the

CloudBroker component) and the “<args>” part are a bunch of different arguments

like the UDP port of the DeliveryService component. After the process is created

the BE-Tree branch given as the argument of the constructor is serialized and sent

to the new process after which a ChildCommunicationsThread object is cre-

ated and started in a separate thread. If all of that went without exceptions being

thrown the RealPnode is replaced by the new ProxyPnode in the p-directory of

the RealPnode’s parent Cnode and the numChildren variable of the current matcher

is incremented by 1. The incrementation of the numChildren counter is also synchro-

nized (on a mutex object in the AbstractMatcher class) and if incremented from

0 to 1 causes the sending of a message to the current matcher’s parent matcher inform-

ing it that its child matcher (the current matcher of the ProxyPnode) has just stopped

being a leaf matcher.

In order to better understand the BE-Tree methods the reader should first under-

stand the merging process. The merging process is done by the mergeWithChild

private method which is synchronized on the ProxyPnode object. This synchro-

44

nization makes sure that the BE-Tree methods are blocked from execution while the

merging process is not finished. The argument of the method is a RealPnode object

that is the root of the BE-Tree branch that the ProxyPnode received from the child

matcher. A null argument means that the child matcher is empty and in that case the

method constructs a new RealPnode to work with.

The first thing this method does is destroy the child matcher process and sets the

stopped Boolean class-level flag to true. After that it takes all the messages from

the queue of sent but unresponded messages and processes them in a standard way

over the RealPnode received from the child matcher. That way no messages get

lost in the merging process. When the updating of the former child’s BE-Tree branch

is finished it is put in the ProxyPnode’s parent Cnode p-directory instead of the

ProxyPnode and the scoreUpdateToTop method of the parent Cnode is called

with a ChildMatcherRemovedMessage object as its argument. The last thing the

mergeWithChild method does is the opposite of the last thing the constructor does.

It decreases the numChildren class-level variable of the current matcher by 1. The

decrementation of the numChildren counter is also synchronized (on a mutex object in

the AbstractMatcher class) and if decremented from 1 to 0 causes the sending of

a message to the current matcher’s parent matcher informing it that its child matcher

(the current matcher of the ProxyPnode) again became a leaf matcher.

The methods findMatchingSubscribers, insert, remove and

deleteSubscriber (which I will grouply refer to as “BE-Tree methods”) all fol-

low the same idea so I’m not going to explain them separately. As mentioned before

they are all synchronized on the ProxyPnode object which makes them wait while

the merging process is being done. However, once the method is called it cannot be

uncalled which leaves the case of what happens after the merging has been done and

the ProxyPnode is no longer a part of the BE-Tree. Since the mergeWithChild

method sets the stopped flag a BE-Tree method can check if a merging has occurred

while it waited. If that happened the method just gets the new RealPnode from the

parent Cnode’s p-directory and calls its same-named method and returns whatever it

returns. That way a “bypass” around the old ProxyPnode is done for all that call its

methods before they register the change in the Cnode’s p-directory.

The second thing a BE-Tree method does is that it adds the message received as

the method argument into the ProxyPnode’s message queue, unless the queue is a

null reference which indicates that the child matcher is not a leaf matcher. Also if the

method finds the queue empty at this point it also saves the ID of the message into the

45

firstMsgID class variable. This information is necessary to synchronize the messages

once the child matcher becomes a leaf matcher again because responses to messages

before it became a leaf matcher could still arrive and they shouldn’t result in message

polling from the queue.

The final part of a BE-Tree method is simply forwarding to the child matcher the

message received as the method argument and returning a fixed value such as 0 for the

findMatchingSubscriber method, the SUB_FORWARDED constant for the

insert method or the UNSUB_FORWARDED constant for the remove method.

The last method left to describe is the requestProcessed method. This meth-

od is also synchronized on the ProxyPnode object which means that it also blocks

the execution of the BE-Tree methods. That is necessary because this method polls

messages from the message queue and has to do all of it as an atomic operation. The

method is triggered by a message received from the child matcher. That message is

the argument of the method. The method first checks that the queue is not a null

reference, then it checks if the firstMsgID variable is set and if its value is equal to the

ID of the argument message (which should be the same for a request-response message

pair). If the IDs match or the firstMsgID variable was not set a message is polled and

the firstMsgID set to null. This effecively synchronizes the message queue by letting

all the responses to messages sent before the message queue was “turned on” go by

without polling from the queue. The first response message that manages to trigger a

poll from the queue is a response to the first message put into the queue after it was

“turned on”.

The ChildCommunicationsThread subclass of the ProxyPnode is a pro-

cessor as well as a receiver of messages from the child matcher. It can process seven

different messages the child matcher can send and they are very different in the way

they have to be handled.

Perhaps the most standard ones are the SubscriberDeletedMessage, the

SubscriptionRemovedMessage and the SubscriptionAddedMessage.

They are all handled in a similar fashion. First the requestProcessed method is

called and the score of the ProxyPnode set to the value carried by the message ob-

ject. Then the scoreUpdateToTop method of the parent Cnode is called but only

if the subscription was successfully added or removed and if the score is not negative

infinity. A negative infinity score of the child matcher indicates that the child matcher’s

BE-Tree is empty and that triggers the merging, or rather deleting, of the child matcher.

46

This is done by calling the mergeWithChild method with a null argument fol-

lowed by a return statement that will exit the runmethod and consequently stop the

thread. Besides those three messages only a ChildMatcherRemovedMessage

has to reach the RootMatcher component. It’s processing consists of simply setting

the new ProxyPnode score and calling the scoreUpdateToTop method of the

parent Cnode.

The remaining three messages are only processed locally and don’t propagate up

the matcher tree. The MatcherMergingMessage triggers a call to the

mergeWithChildmethod after which it simply returns from the runmethod which

will cause the thread to stop and make the ProxyPnode garbage-collectable. The

PublicationProcessedMessage is the simplest to process. It is only sent by

leaf matchers and its only purpose is to poll a publish message from the message

queue. The LeafMatcherMessage is specific for the fact that it is the only message

sent from the child matcher self-initiatively. Its processing depends on a Boolean flag

it’s carrying. If true a new ProxyPnode message queue is constructed and the

firstMsgID variable set to null. If false both the message queue and the variable are

set to false. In any case the operations are done synchronized on the ProxyPnode

so they are atomic in respect to the BE-Tree methods.

6.3. Broker implementation

The other important package in the CloudBeTreePubSub project is the hr.fer.

tel.pubsub.entity package where implementations of all the entities, i.e. bro-

ker, subscriber and publisher, are located. The ...entity.broker package con-

tains all the classes that implement the system’s main component - the centralised

cloud-based broker. There are three classes that are not implementations of broker

components, i.e. are not run in separate processes. They are:

– PublisherForBroker class - this class is the implementation of the afore-

mentioned publisher handler (Section 5.2). It is simply a representation of a

publisher on the broker. It hold the basic information about the publisher like

its UUID identifier, its IP address and its local port. It also implements the

Runnable interface which makes it runnable in a thread and that is its main

feature. The run method continually reads objects from the input stream of the

TCP connection to the publisher and processes the received messages. There

are only two types of messages intended for it to receive:

47

the PublisherDisconnectMessage and the PublishMessage. The

reception of a PublishMessage object triggers a call to the publish

method of the MessageReceiver object that created the PublisherFor-

Broker. The reception of a PublisherDisconnectMessage simply

causes the while loop to break, which makes the run method return after it

terminates the TCP connection with the publisher and calls the removePub-

lisher method of the MessageReceiver.

– SubscriberForBroker class - this class is the implementation of the afore-

mentioned subscriber handler (Section 5.2). Its purpose is the same as that of

the PublisherForBroker class, as is the information it holds about the

subscriber and the implementation idea. The only difference is in the mes-

sages it can receive and the state that it can be in. What I mean by the “state

that it can be in” is that since a subscriber can be registered while being dis-

connected a SubscriberForBroker object can exist without running in

a thread. Upon receiveing a SubscriberDisconnectMessage object

the SubscriberForBroker simply breaks the TCP connection and for-

wards the message to the CloudBroker but doesn’t remove itself from any

structure that may hold it inside the MessageReceiver object. That is

done when it receives a SubscriberUnregisterMessage. Then after

breaking the TCP connection it calls the removeSubscriber method of the

MessageReceiver.

– SubscriberQueue class - this class contains a queue structure for holding

NotifyMessage objects to be sent to a subscriber, a TCP connection to a

subscriber and implements a mechanism for automatic, continual sending of

queue elements to the subscriber whenever a TCP connection is available. The

queue structure used is an instance of the MinimalistLinkedHashQueue

class described in Section 6.1 and made specifically for this use. The

SubscriberQueue implements the Runnable interface and is run inside a

separate thread whenever a TCP connection with the subscriber is established.

The run method is simply a loop that in each iteration takes the first message

from the queue and tries to send it to the subscriber. It does this synchronized on

a mutex object so messages can be sent atomically. This is important because

messages have to also be put in the queue atomically using the putmethod and

removed from it atomically using the remove method since different threads

execute those methods.

48

The implementations of the three static broker components are: the MessageRec-

eiver class, the DeliveryService class and the CloudBroker class. The

base for a matcher component is the AbstractMatcher abstract class which im-

plements most of the matcher functionality. It is extended by the RootMatcher

and ChildMatcher classes which implement the subtle differences between the two

kinds of matchers. Each component implementation, except the CloudBroker, con-

tains a subclass called InternalCommunicationsThread that implements the

Runnable interface and is used as a thread that constantly waits for incoming mes-

sages from other components and starts their processing. This thread is started in the

constructor of every component implementation and is what keeps alive the process

that the component was started in.

6.3.1. The “CloudBroker” component

Instead of having a single InternalCommunicationsThread subclass like the

other component implementations, the CloudBroker class has three different sub-

classes with similar tasks, one for each component the CloudBroker is connected to.

Their names are: the MessageReceiverRelay, the DeliveryServiceRelay

and the RootMatcherRelay, and they are called “relays” because all they do is

read messages from the input stream of a component and then send them to other com-

ponents via their respective output streams, perhaps writing a message to the log in the

process.

Beside the relaying function the CloudBroker’s only use is to setup the broker

parameters by reading various properties files, create all the other components and to

start and shutdown the broker on command.

In its constructor the CloudBroker class loads the broker properties file that

contains all the broker parameters like its name and port, the matching and merging

thresholds, the logging and testing flags and so on. It also loads two other properties

files the paths to which should be in the broker properties file. One should hold the

attributes for the BE-Tree and be loaded into the BETreeParams singleton class,

and the other should hold all the allowed attributes and their allowed values and be

loaded into the Attributes singleton class. After loading all the parameters the

constructor creates the DeliveryService, MessageReceiver and RootMatcher compo-

nents and starts their respective relay threads. It creates all of them by an equiv-

alent of writing “java -cp <classpath> <class package and name>

<args>” in the command line where “classpath” is a string parameter in the prop-

49

erties file and “args” are various arguments for the components’ constructors. After

starting a component the Attributes and/or BETreeParams singleton classes are

serialized and sent to it so they are the same on all components. They are received and

set in the constructors of the components’ respective InternalCommunica-

tionsThread subclasses.

When the start public method is called a ComponentStartMessage ob-

ject is sent to both the MessageReceiver and the DeliveryService components which

triggers a call of the start methods of their respective implementation classes. The

shutdown method simply kills the CloudBroker’s process which triggers an auto-

matic chain reaction of component shutdowns because of the closing of the processes

input/output streams.

6.3.2. The “MessageReceiver” component

The MessageReceiver class contains two subclasses in addition to its

InternalCommunicationsThread: the BrokerListenerThread and the

BrokerServingThread classes, both of which implement the Runnable inter-

face. The BrokerListenerThread subclass is constructed and started inside its

own Thread object in the start method. The start method is called when the

InternalCommunicationsThread receives a StartComponentMessage

object from the CloudBroker. The only other object the InternalCommunica-

tionsThread of the MessageReceiver can process is an instance of the

SubscriberDisconnectMessage which triggers the teardown of the TCP con-

nection to a subscriber.

The class also contains three collections of objects: a list of all publications that en-

tered the broker, a list of active publishers as a map of PublisherForBroker ob-

jects mapped to publisher IDs, and a list of active subscribers as a map of Subscrib-

erForBroker objects mapped to subscriber IDs.

The BrokerListenerThread contains a ServerSocket object which

means that it listens for incoming TCP connection requests. In fact that is all the

BrokerListenerThread does, accept TCP connections in a loop as long as the

MessageReceiver process is alive. When it accepts a TCP connection a Socket object

is created which is then passed to a newly created BrokerServingThread object

which is in turn started in its own new thread so the thread running the BrokerList-

enerThread object can go back to accepting new connections.

The purpose of the BrokerServingThread is to perform the initial steps in

50

connecting a publisher or a subscriber to the broker. Accordingly it accepts only two

kinds of messages: the PublisherRegisterMessage and the SubscriberRe-

gisterMessage, and only one copy of it before its run method ends. This is nec-

essary because at the initial TCP connection establishment the broker cannot know if

a publisher or a subscriber is connecting to it. If a PublisherRegisterMessage

is received a new PublisherForBroker object is created and placed in the ac-

tivePublishers map. The Socket object representing the TCP connection is given

to the publisher handler and it is run in a separate thread the communicates with the

publisher from that point on. If a SubscriberRegisterMessage is received it is

first checked if the activeSubscribers map contains an entry under the subscriber ID in

the message. If it does it means that the subscriber was just disconnected and the old

SubscriberForBroker object is given the new Socket object and ran in a new

thread. If there was no old entry in the map a new SubscriberForBroker object is

created and everything else is done the same. At the end the RegisterSubscrib-

erMessage is forwarded to the CloudBroker component for relaying to the Deliv-

eryService component.

6.3.3. The “DeliveryService” component

In the construction of a DeliveryService object a HashMap called a queueDi-

rectory is made and an InternalCommunicationsThread object is instantiated

and started in a new Thread object. The queueDirectory’s keys are UUID objects

representing subscriber ID’s and its values are SubscriberQueue objects. The

InternalCommunicationsThread of the DeliveryService can process the fol-

lowing five messages:

– StartComponentMessage - when this message is received the start

method is called which simply constructs a new NotifyReceiverThread

and runs it in a new Thread object.

– InitialMatchesMessage - this message contains a list of Publication

objects that all have to be put in a queue of the subscriber whose ID is also

carried by the message. This is done in the bulkNotify method by sim-

ply getting the subscriber’s SubscriberQueue object from the queueDi-

rectory map by its ID and then constructing a NotifyMessage for each

Publication and putting in the queue.

– SubscriberRegisterMessage - upon receiving this message the

queueDirectory is searched for an existing queue in the case the subscriber

51

was just disconnected. If not found a new SubscriberQueue object is

constructed and placed in the queueDirectory. Then a TCP connection to the

subscriber is established using information from the message sent by the sub-

scriber and forwarded to the DeliveryService through the broker. The resulting

Socket object is then given to the SubscriberQueue object which is then

ran within a new thread so the contents of the queue can be sent to the sub-

scriber.

– SubscriberDisconnectMessage - this message causes only the TCP

connection to the subscriber to be terminated which will automatically stop

the thread running the subscriber’s SubscriberQueue object, but the queue

itself will not be removed from the queueDirectory map.

– subscriberUnregisterMessage - this message causes both the termi-

nation of the TCP connection as well as the removal of the SubscriberQueue

object from the queueDirectory map of the DeliveryService.

The purpose of the NotifyReceiverThread object ran in a thread started in

the start method is to continually accept UDP packets from matcher components.

Those UDP packets should contain a PublishMessage object containing an

ActivePublication and a set of subscriber ID’s. Upon receiving a UDP packet

the NotifyReceiverThread will unpack the information and call the

notifySubscribers method of the DeliveryService. The notifySubs-

cribers method will get a SubscriberQueue object for each of the subscribers,

by using the queueDirectory and the subscriber ID’s, and then put a NotifyMessage

object containing the original publication in the queues. In case the request was actu-

ally an unpublish (indicated by a flag in the PublishMessage) the publication will

try to be removed from the queues, and if not found a PublishMessage with a flag

indicating unpublication will be put in the queue to be sent to the subscribers instead.

6.3.4. Matchers

As already mentioned in the beginning of Section 6.3, the base of all matcher compo-

nents is the AbstractMatcher abstract class. This class implements the singleton

pattern which is necessary in order for the ProxyPnode class to have access to its

“home” matcher. This singleton instance is set in the main method at the starting of

the matcher component.

52

The two matcher implementation classes, RootMatcher and ChildMatcher,

extend the AbstractMatcher class and implement only two things by which they

fundamentally differ. Those are the notifyParentMatcher method and the con-

structor of the InternalCommunicationsThread, both of which are defined as

abstract in the AbstractMatcher class.

Beside the InternalCommunicationsThread there is another subclass of

the AbstractMatcher - the UDPMatchingResultsManager. Unlike every

other subclass in the project it isn’t started in a separate thread. It’s instantiated only

once, in the constructor, and its purpose is to construct a UDP socket and wrap the

UDP communication with the DeliveryService in a simple method.

The most important information held by a matcher is located in the branchRoot

BeTreeActiveNode and the numchildren integer counter. Both of them are fields

of the AbstractMatcher class and the later also has a related mutex object for

thread synchronization when making changes to its value.

The InternalCommunicationsThread of a matcher knows how to process

only the three messages that can reach the RootMatcher from the CloudBroker, i.e.

the ones that have an effect on the BE-Tree or initiate the matching process.

A SubscriberUnregisterMessage is processed simply by calling the

deleteSubscriber method over the branchRoot. If the matcher is a leaf matcher

(numChildren is 0) then the notifyParentMatcher method is called with a new

SubscriberDeletedMessage object.

The processing of a SubscribeMessage object depends on its unsubscribe flag

but is logically identical. Either the removeSubscription or the addSubscri-

ption method is called upon the branchRoot. Depending on the return value of the

called method the notifyParentMatcher method is called with the appropriate

message object to send to the parent matcher (described in Section 5.3, Figures 5.5 and

5.6).

The matching process on a matcher begins with it receiving a PublishMessage

object. The matching part of the process consists of three simple steps: 1) call the

findMatchingSubscribersmethod of the branchRoot, 2) use the returned value

to update the minimum and maximum matching time in the matching window, 3) call

the send method of the UDPMatchingResultsManager that sends the results of

the local matching to the DeliveryService. After the matching part is done a decision

has to be made whether to split or merge the matcher. The condition for splitting

is checked first and if it’s satisfied the highestMatchingTimePNode method of

53

the branchRoot is called to find the splitting node after which a new ProxyPnode is

constructed with that node as the argument. All necessary actions for splitting are done

in the ProxyPnode and are described in Section 6.2.2. If the splitting condition is

not satisfied the merging condition is checked. The action for merging is just sending

a MatcherMergingMessage object via the notifyParentMatcher method

which the corresponding ProxyPnode will receive and process accordingly, as is

described in Section 6.2.2. If neither of the conditions were satisfied so far then only if

the matcher is a leaf matcher a PublicationProcessedMessage object is sent

to the parent matcher, otherwise the matching process is over.

The only thing left to describe are the matcher implementation classes. Both of

them contain very little code although the ChildMatcher’s is a lot more func-

tional. The ChildMatcher’s InternalCommunicationsThread implemen-

tation has a constructor that reads the BE-Tree branch from the input stream from the

parent matcher and saves a reference to it in the branchRoot class-level field. The

notifyParentMatcher method contains code that inserts the current score of the

root node into SubscriberDeletedMessage, SubscriptionRemovedMe-

ssage, SubscriptionAddedMessage and ChildMatcherRemovedMess-

age objects before it sends them to the parent matcher through the process’s output

stream. Also it checks if the root node of the BE-Tree branch is empty in which case it

puts negative infinity as the score to indicate emptiness to the parent matcher and sets

the matcherRunning field of the AbstractMatcher class to false to stop fur-

ther processing of messages by the InternalCommunicationsThread. It also

fills the MatcherMergingMessage with the BE-Tree branch before sending it to

the parent matcher. All other message types are just forwarded to the parent matcher

without change.

The RootMatcher class contains almost no functional code. The BrokerComm

subclass that extends the InternalCommunicationsThread adds no code to it

at all. The notifyParentMatcher method, defined as abstract in the Abstract

Matcher class, also has no functional code, merely logging. And the last part (or the

first) is the constructor that simply starts the InternalCommunicationsThread

and creates a new, empty Cnode object as the root of the BE-Tree.

54

7. Experimental evaluation

To test the functionality of the developed system four experiments have been per-

formed, one for each developed publish-subscribe system version. The centralised

versions were tested to compare the covering forest and the BE-Tree matching al-

gorithms (Section 7.1), and the cloud versions were tested to investigate the general

behaviour of the developed system, and to compare its performance with a different,

more simple cloud architecture (Section 7.2).

All four experiments have been performed on two desktop computers with char-

acteristics given in Table 7.1, and connected directly with an Ethernet cable. In all

experiments one broker was running on one of the computers, while the second tested

one subscriber and one publisher.

Table 7.1: Computer characteristics

Processor

Intel Core i3-2120

of cores 2

clock speed 3.3 GHz

Working memory 4 GB

Operating system Windows 7 Professional

The data used in the experiments are real world sensor data collected during the

scope of the OpenSense project1. In particular, I have used five files, located in the

“testdata” folder, which contain various sensor measurements and their timestamps:

– the “carbon-monokside” file contains 76 rows, each of which contains mea-

surements from 5 sensors of the carbon-monoxide gas in the air (ppm2).

– the “ozone” file contains 909 rows, each of which contains measurements from
1http://opensense.epfl.ch
2ppm = parts per million

55

10 sensors of the ozone gas in the air (ppb3).

– the “schimmelstrasse” file contains 919 rows, each of which contains measure-

ments from 5 sensors of the O3 (ppb), CO (ppm), NO (ppb), NOx (ppb) and

NO2 (ppb) gasses in the air.

– the “stampfenbachstrasse” file contains 919 rows, each of which contains the

same type of information as the rows in the “schimmelstrasse” file

– the “ultrafine-particles” file contains 808 rows, each of which contains mea-

surements from 10 sensors of ultra-fine particles in the air, although many rows

miss some of the measurements.

The classes used for testing are located in the “test” folder of each project, and are

named the same and work identically in all the projects. The testing class that starts

the publisher is called TestdataPublisher, and is located in the hr.fer.tel.

pubsub.entity.publisher package. Its main method expects three command-

line arguments: the location of the configuration file for the publisher, the location of

the testing data files and the number of publications it has to generate. When started,

it creates a new Publisher class, and reads the data from all five data files into lists

of strings, where each string is a row of a file. Before publishing the sensor data, a

Random object is created, but with a fixed “seed” number. Because of this, exactly

the same “random” data will be used at each testing execution, which is important for

comparison of experimental results.

The generation of publications is done in a loop by randomly choosing a row in

each of the files, and publishing all sensor measurements from those rows as separate

publications until the number of published publications exceeds the number given as

the command-line argument. At the end of each loop iteration, a publication with

a “test” attribute and the number of published publications is created and published.

This is done so the subscriber doesn’t write to the screen all the publications it receives

(which slows it down), but only writes these “test” ones instead.

The testing class that starts the subscriber is called TestdataSubscriber, and

is located in the hr.fer.tel.pubsub.entity.subscriber package. Un-

til it comes to the generation of subscriptions, it is in every way the same as the

TestdataPublisher class. It accepts the same three command-line arguments,

creates a Subscriber class, reads the data from the same files and creates a Random

object with a fixed “seed” number.
3ppb = parts per billion

56

The generation of subscriptions is split in five “for” loops, one for each of the data

files. One fifth of the specified number of subscriptions is generated from each of the

files, and out of that fifth three quarters are subscriptions on sensor measurements,

and the rest are subscriptions on timestamps. The subscriptions on timestamps are

made to give “width” to the generated set of subscriptions, “width” in the sense of less

overlapping and mutual covering. Each of the subscriptions on sensor measurements

are made by randomly choosing a row of a data file, and then choosing a random

measurement in that row and a random numerical operator (BETWEEN excluded) to

create a Triplet object. All generated subscriptions contain only a single Triplet

object.

7.1. Performance evaluation of the centralised versions

The performance evaluation of the centralised publish-subscribe version was done pri-

marily to test the BE-Tree algorithm implementation, and to compare its results to the

results of the covering forest algorithm. All measurements were done by first starting

a broker on the first computer followed by starting the subscriber and then the pub-

lisher on the second computer. As soon as the subscriber is started, all subscriptions

are generated and sent to the broker, and also as soon as the publisher is started all pub-

lications are generated and sent sequentially to the broker as fast as possible. Three

measurements were done for each combination of the number of subscriptions and

publications, and the components were shut down and restarted in the same order for

each measurement.

The measured time is the sum of the execution times of the publish method of

the broker, which was done by adding timing code inside the publish method. The

publish method includes the following operations:

1. finding the publisher handler by a hash table look-up,

2. checking if the publication satisfies the attribute constraints (checkPublic-

ation method of the Attributes class),

3. adding the publication to the HashSet of active publications,

4. doing the matching process, i.e. finding all subscribers that need to be notified,

5. finding the subscriber queue for each of the subscribers (a hash table look-up),

57

6. creating a NotifyMessage object for each of the subscribers and putting it

into the subscriber’s SubscriberQueue,

which approximately corresponds to the pure processing time of a single publication,

without its system entry and exit times that are influenced by the network.

The experimental results of the system using the covering forest algorithm are

given in Figure 7.1, and the results of the system with the BE-Tree algorithm are given

in Figure 7.2.

Figure 7.1: Testing results for

the covering forest centralised

publish-subscribe system

Figure 7.2: Testing results for

the BE-Tree centralised

publish-subscribe system

Each of the graph lines in figures is a plot of the average processing time for a

single publication, given in microseconds, against the number of subscriptions. As it

can be seen, the measurements were made for 0 subscriptions up to 5000 subscriptions

with a step of 1000 subscriptions, and an extra measurement for 10000 subscriptions to

see if the behaviour is consistent. The measurements were made when 10000, 50000

and 100000 publications were generated, in the case of the covering forest algorithm,

and for 50000, 100000, 150000 and 200000 publications in the case of the BE-Tree

algorithm. The number of publications for the BE-Tree algorithm is greater because

its performance was surprisingly good, but the results can still be compared on the two

overlapping amounts of publications. For 5000 subscriptions the performance of the

BE-Tree algorithm is approximately 5 times faster while for 10000 subscriptions it is

approximately 10 times faster. The amount of time needed by the BE-Tree centralised

version to process a hundred thousand publications on ten thousand subscriptions is

half a second on the average of three measurements, which is a great result. But the

most important information from the plots is the general tendency of the processing

time per publication of the system as it contains more subscriptions. For the covering

58

forest algorithm that tendency looks linear, but for the BE-Tree algorithm it is clearly

logarithmic which is its biggest advantage in comparison.

7.2. Performance evaluation of the cloud versions

The experiments of the cloud-based systems were conducted based on the same princi-

ples as the experiments of the centralised systems, meaning that there were three runs

for each combination of the number of subscriptions and publications, and that the

system entities were run on the same computers and in the same order. The difference

is only in the main system (the BE-Tree based cloud broker) that has to have a train-

ing period to build and stabilize the matcher tree before the time-measured testing can

begin. This was done manually by publishing smaller numbers of publications (from

few tens to few thousands) until the broker started to process them smoothly.

The difficulty with testing the developed cloud-based BE-Tree publish-subscribe

system arises from its biggest advantages - its locality and weak connectedness. The

whole system is designed in such a way that no single component has the knowledge

about the state of the whole system and cannot control it directly. This causes a prob-

lem for testing because it is very difficult to monitor the current structure of the matcher

tree, or even only the total number of matchers and the tree depth. The same is with

any other information, including the most important one for testing - the matching

times for each component. Therefore, in order to be able to collect that information,

a lot of additions to the code had to be made, including two completely new message

classes and code to process them on every component. With such code modifications,

the matching times of all components can be reset (necessary after the training period)

and collected on user input to the broker. When a user enters a sequence of keys, a

message object is created that floods the matcher tree, and the other (static) compo-

nents, and all components respond to the message and forward the others (responses of

the components lower in the matcher tree) to the CloudBroker, which then prints the

information on the screen.

Note that all the operations that are performed within a single method on the cen-

tralised systems are now performed across not only different methods or objects, but

also different processes. And the matching operation is, therefore, burdened and con-

strained by the inter-process communication, which takes a lot of time, especially on a

machine with only two cores and one processor to service a lot of processes and even

more threads. All the operations that were timed, and the components that they were

timed on, are as follows:

59

– MessageReceiver

1. finding the publisher handler with a simple hash table look-up

2. checking the publication with the Attributes singleton class

3. forwarding the PublishMessage to the CloudBroker (!)

4. adding the publication in the activePublications HashSet

– CloudBroker

5. forwarding the PublishMessage to the RootMatcher (!)

– every matcher

6. doing the matching process on the local BE-Tree

7. making a UDP packet and sending it to the DeliveryService (!)

8. responding to the parent matcher (only leaf matchers)

The operations marked with “(!)” are the ones that take a lot of time and are especially

affected by the fact that the testing was done on a computer with little parallel pro-

cessing capabilities. On a more suitable computer those times should be considerably

lower.

Since a lot of processing is done in parallel on multiple matchers, the question is

what exactly is the total matching time for all the published publications. In case of the

main cloud system, the total matching time on the matchers is the total matching time

of the RootMatcher, through which all publications pass, plus the difference between

the end time of processing of the last publication on the RootMatcher and the matcher

that last finished processing the last publication. After the experiment has ended, it

was determined that the total matching time on the matcher tree could be approximated

with just the matching time of the RootMatcher, because the described difference was

almost always 0 ms. This leads to the conclusion that the matching time of the whole

BE-Tree is equal to the matching time of the subtree left on the RootMatcher plus

some inter-process communication overhead. The times that need to be added to the

RootMatcher’s processing time are the processing times of the MessageReceiver and

the CloudBroker components. Figure 7.3 shows the results for the average matching

time per publication of all components combined, while Figure 7.4 shows the results

60

for just the RootMatcher component, and Figure 7.5 depicts the results for the Mes-

sageReceiver and CloudBroker components combined, i.e. the matching overhead.

Figure 7.3: Overall average processing time for the cloud broker

Figure 7.4: Average matching time

for the cloud broker

Figure 7.5: Average processing overhead

time for the cloud broker

The graphs on Figure 7.3 show that the average processing time per publication

is between 300 and 350 microseconds, which is around 50 times slower than the cen-

tralised BE-Tree system. Probably the biggest reason for such a huge difference is the

lack of parallel processing power of the computer, which considerably slows down the

inter-process communication of the many processes. But more important is the shape

of the graph, which seem logarithmic and similar to the centralised BE-Tree version’s

results. Moreover, the graph in Figure 7.4, which shows the average matching times of

just the matcher tree, is clearly similar to Figure 7.2 where a slow, but steady incline

can be seen. In the other two figures the graph lines look more like constant func-

tions, which is also an important result. The reason why the graph lines in Figure 7.3

61

look constant is because their shapes are dominated by the graph lines on Figure 7.5,

which is due to the matching times on the matcher tree being almost three times lower

than the matching times on the static components. The result, that the overhead pro-

cessing times act as constant functions of the number of subscriptions, is both logical

and good. This all means that the average matching time rises logarithmically to the

number of subscribers and has a huge constant factor, which can probably be lowered

significantly with proper hardware.

The other system that was tested has a different, more simple architecture, which

is why it is referred to as the “primitive” cloud version. The idea was to measure the

performance of a system that has a less complicated, non-dynamic architecture, but

uses the same matching algorithm, in order to be able to compare the results of the

main developed system and to see how much it loses or gains from the complicated

architecture that gives it the important elasticity feature.

The “primitive” cloud version uses a fixed number of matcher components in paral-

lel. Those matchers are the same as the RootMatcher component of the elastic system,

but without the splitting possibility. The CloudBroker component of the “primitive”

system starts all the matcher components at startup, and has a direct connection with

all of them. The rest of the “primitive” system architecture is exactly the same as that

of the main, elastic system.

This system has a simple way of processing subscriptions and publications. The

CloudBroker distributes received SubscribeMessage objects in a round-robin fash-

ion to the matcher components. That results in all of the N matchers having a BE-Tree

containing one N -th of the total subscriptions on the broker. The PublishMessage

objects are replicated on the CloudBroker and sent to all the matchers. This slows the

broker down because of inappropriate hardware even more than in the elastic system’s

case, because the CloudBroker has to make N costly communication operations in a

row, and the other components have to wait for it to finish, which makes the Cloud-

Broker become the bottleneck of the system.

As with the elastic system there is a question of what is the real total matching time

of all the publications. In the case of the elastic system, that was the matching time of

the RootMatcher plus the difference between the matcher that last finished, which in

the case of the “primitive” system clearly isn’t applicable. Since all the matchers run in

complete parallel, and get all the publications at the same time, the total matching time

of the “primitive” system should be the maximum matching time among the matching

times of all the matchers. The average overall matching times of the “primitive” system

62

are shown in Figure 7.6, and are calculated by adding the “overhead” matching times

shown in Figure 7.8 to the maximum matcher matching times show in Figure 7.7. The

number of matchers that were used is N = 15, which roughly equals the sizes of the

matcher trees that were created in the testing of the elastic cloud system.

Figure 7.6: Overall average processing time for

the “primitive” cloud broker

Figure 7.7: Average matching time

for the “primitive” cloud broker

Figure 7.8: Average processing overhead

time for the “primitive” cloud broker

The first obvious thing to see in Figure 7.6 is that the average matching times per

publication are three to four times greater than in the elastic system case, and also that

the graph lines have a more linear look to them. If we look at the matching times

of just the matchers (Figure 7.7), we can see that at first the processing times are

smaller than in the elastic cloud case, but later become equal and even greater, and

more importantly, that after that point they have a linear-looking tendency to rise, as

opposed to logarithmic. The reason that at first we detect better results is probably

due to a less complicated architecture and the simplicity of each matcher on its own,

while the cause of the linear-looking graph lines could be due to the fact that the BE-

63

Trees of each of the matchers are built on a random subset of all the subscriptions,

which disables the BE-Tree structure to use the complete information of the whole

subscription set and results in N smaller, but less efficient BE-Trees.

The overhead times of the “primitive” system are evidently huge. Even at 0 sub-

scriptions they are almost twice the overhead times of the elastic system, and later on

after 5000 subscriptions seem to grow linearly, ending in five to six times the over-

head times compared to the elastic system. This is probably due to the fact that the

CloudBroker becomes the communication bottleneck of the system, and the weak par-

allel processing power of the hardware. But even with better hardware the shapes of

the lines would probably persist, and the elastic cloud system would offer better per-

formance, especially for a large number of subscriptions, while retaining its biggest

advantage - its elasticity.

64

8. Conclusion

The purpose of this thesis was to develop a model for cloud-based publish-subscribe

services that could be used in services that have to process big amounts of streaming

data in real-time, and deliver them in near real-time to a large number of users with

dynamic interests.

The thesis presented the motivation for building such services, and also the benefits

of the cloud approach against the commonly used, and much researched, distributed

approach. The thesis provided an overview of the current work on cloud-based publish-

subscribe models, and pointed out some of their shortcomings. The conclusion is that

a publish-subscribe service in a cloud should be as loosely connected as possible, with

as little information as possible being communicated internally, because that generates

overhead that slows down the processing of publications. It is also concluded that in-

terface components, to which publishers and subscribers connect, have to do as little

work as possible in order to avoid becoming bottlenecks. A single interface compo-

nent could be enough if its only job is to accept, check and forward subscriptions and

publications to internal components of the broker. The general feeling is that simplic-

ity should be strived for, because in the cloud environment things seem to get very

complicated very easily when a lot of processes or VM’s are used and share common

information. Also, an argument is made about how there is no good reason why defi-

nition of allowed attributes, and their allowed values, at startup would be a bad thing,

especially if it can make the service more efficient.

A recently developed algorithm for indexing and matching Boolean expressions

was presented in the thesis - the BE-Tree algorithm [8]. The algorithm was apparently

very good and showed excellent performance results, that were also confirmed by an

experiment made as a part of this thesis. The idea of the thesis was to design a model

based on the BE-Tree algorithm that satisfies all of the conclusions made by studying

the existing cloud models. Such a model was designed and a cloud implementation of

it was built and tested to evaluate its performance.

The developed model presents a way to distribute a single logical BE-Tree across

65

an unbounded number of matchers in the cloud, arranged in a self-organizing tree

structure that can freely contract and expand to meet the requirements of the current

workload. The connections between the matchers are transparent even to the match-

ers themselves, by being hidden in “proxy” BE-Tree nodes, making the whole broker

structure as loosely coupled as possible. All broker components function completely

asynchronous and in parallel.

The implementation has some limitations which are discussed later on, while the

experiments were run on hardware that was not appropriate for the developed software,

but still the performed experiments show promising results. The publications are deliv-

ered on an “at most once” basis, but are all processed on the broker BE-Tree. The ones

that are not delivered are almost certainly not delivered due to UDP buffer overflow-

ing on the DeliveryService component. The results show that the matching time per

single publication over the whole BE-Tree is practically reduced to the matching time

of a publication on just the top matcher component, effectively reducing the match-

ing time by a factor of the number of matchers. This behaviour is consistent with full

parallelization, however this model shows such behaviour while having components

organized in a tree structure, which is naturally dynamic and has less communication

overhead, instead of a common flat structure. The processing times do not allow a

high throughput (about 3500 publications per second) but it is shown that the average

processing time grows very slowly (logarithmically) with the number of subscriptions,

and on proper hardware can probably be reduced to the level more close to that of the

centralised BE-Tree broker, which is around 50 times smaller.

The BE-Tree algorithm implementation can be improved by adding various adap-

tation policies and optimizations suggested by the creators of the BE-Tree algorithm

in their article [8]. The developed system also has room for improvement. For exam-

ple, UDP communication with the DeliveryService could be replaced by TCP, and the

CloudBroker component could be removed completely, making communication more

direct and saving time on relaying through an otherwise functionless component. A

better splitting and merging strategy could be developed as well, one based not only

on the matching times on a single matcher, which depend mostly on the size of the

matcher-local BE-Tree structure, but also on the intensity of incoming publications to

a matcher and their queuing time.

Author signature:

66

BIBLIOGRAPHY

[1] Gianpaolo Cugola and Alessandro Margara. High-Performance Location-Aware

Publish-Subscribe on GPUs. Proceedings of the 13th International Middleware

Conference, 2012.

[2] Michael Freeston. A General Solution of the n-dimensional B-tree Problem. Pro-

ceedings of the 1995 ACM SIGMOD international conference on Management of

Data, 1995.

[3] Vincenzo Gulisano, Ricardo Jiménez-Peris, Marta Patino-Martínez, Claudio

Soriente, and Patrick Vladuriez. StreamCloud: An Elastic and Scalable Data

Streaming System. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED

SYSTEMS, 2012.

[4] Atsushi Ishii and Toyotaro Suzumura. Elastic Stream Computing with Clouds.

IEEE 4th International Conference on Cloud Computing, 2011.

[5] Yannis Manolopoulos, Alexandros Nanopoulos, Apostolos N. Papadodpoulous,

and Yannis Theodoridis. R-Trees: Theory and Applications. Springer-Verlag,

2006.

[6] Alessandro Margara and Gianpaolo Cugola. High Performance Publish-

Subscribe Matching Using Parallel Hardware. IEEE Transactions on Parallel

and Distributed Systems, 2013.

[7] Li Ming, Fan Ye, Kim Minkyong, Chen Han, and Hui Lei. BlueDove: A Scalable

and Elastic Publish/Subscribe Service. Proceedings of the 2011 IEEE Interna-

tional Parallel and Distributed Processing Symposium, 2011.

[8] Mohammad Sadoghi and Hans-Arno Jacobsen. Analysis and Optimization for

Boolean Expression Indexing. ACM Transactions on Database Systems, 2013.

67

[9] Lucija Zadrija. Usluga objavi-pretplati u računalnom oblaku. Master thesis,

University of Zagreb, Faculty of Electrical Engineering and Computing, 2013.

[10] Yuquin Zhu, Jianmin Wang, and Chaokun Wang. Ripple: A pub/sub service

for multidata item updates propagation in the cloud. Journal of Network and

Computer Applications, 2011.

68

Appendix A
The format of the configuration files

There are three different configuration files needed to start an instance of the developed

cloud broker. They can be distinguished by their standard suffixes, although there are

no actual formal constraints on their names or suffixes.

The configuration file ending in “.config” is the main broker configuration file. It

is written in standard Java Properties class format, which is a key and a value in

the same row with an equals (=) sign between them. The properties that are defined

in the main broker configuration file are properties of the broker as an entity, like its

name, port numbers and merging and splitting thresholds. Two of the properties that

also have to be defined are paths to the other two configuration files.

The configuration file ending in “.betree” is of the same format as the main config-

uration file, and holds the specific properties required by the BE-Tree algorithm, like

the minimal and maximal size of an l-node. The contents of this configuration file are

loaded into the BETreeParams singleton class on broker startup.

The last of the configuration files is the one ending in “.attributes”, and in it are

defined all the attributes, and their allowed values, that can be used in subscriptions and

publications. The contents of this configuration file are loaded into the Attributes

singleton class on broker startup, and are given in a special, custom format.

Each attribute has to be defined in a separate line. Empty lines are allowed, as

are comment lines which have to start with the “%” sign. Two types of attributes can

be defined: numeric attributes and string attributes. A numeric attribute is defined by

stating its name, its lower bound, its upper bound and its discretization step, in the

following format:

<attribute name>#<lower bound>:<upper bound>:<discretization step>

69

for example, ozone4#0:200:0.001. A string attribute is defined by stating its

name, followed by all the possible values it can achieve, in the following format:

<attribute name>$<first value>:<second value>: . . . :<nth value>

for example, testText$cat:mouse:dog:bird:dolphin:whatever.

70

A Dynamic and Elastic Publish-Subscribe Service for the Cloud Environment

Abstract

This thesis explores the publish-subscribe communication model and the cloud

computing paradigm as two currently very popular technologies that are still not often

used together. An argument is made about the potential of the combination of the

two technologies in solving modern information flow problems, especially in mobile

environments with big numbers of users that both consume and generate data. Some

existing cloud-based publish-subscribe solutions are presented, and their weaknesses

described. A description of the loosely-coupled, elastic cloud-based publish-subscribe

service, developed for this thesis, is then given. The developed service is based on

the idea of distributing a BE-Tree structure over multiple processes in a cloud and

parallelizing the operations over it. In the end, results of experiments are presented

that show relatively good performance and active potential of the BE-Tree algorithm

and of the developed cloud-based publish-subscribe model.

Keywords: Publish-subscribe, cloud services, BE-Tree, data stream processing.

Dinamična i elastična usluga objavi-pretplati u računalnom oblaku

Sažetak

Ovaj rad proučava komunikacijski model objavi-pretplati te računarstvo u oblaku

kao dvije vrlo popularne tehnologije koje se još uvijke ne koriste često zajedno. Ar-

gument je dan o potencijalu kombinacije ove dvije tehonologije u rješavanju prob-

lema modernih informacijskih tokova, posebno u slučaju mobilnih okruženja s velikom

količinom korisnika koji istovremeno konzumiraju i proizvode informacije. Prezenti-

rani su neki od postojećih objavi-pretplati sustava zasnovanih na oblaku te su opisani

njihovi nedostaci i slabosti. Zatim je dan opis slabo-povezanog, elastičnog objavi-

pretplati sustava zasnovanog na oblaku koji je razvijen u sklopu ovog diplomskog rada.

Razvijeni sustav baziran je na ideji distribuiranja BE-Tree strukture na više procesa u

oblaku te paralelizacije izvod̄enja radnji na njom. Na kraju su predstavljeni rezultati

eksperimenata koji pokazuju relativno dobre rezultate i aktivni potencijal BE-Tree al-

goritma i razvijenog publish-subscribe modela za oblak.

Ključne riječi: Objavi-pretplati, usluge u oblaku, BE-Tree, obrada toka podataka.

