
Recommendation of YouTube Videos

M. Brbić, E. Rožić and I. Podnar Žarko

Faculty of Electrical Engineering and Computing (FER), Zagreb, Croatia

firstname.lastname@fer.hr

Abstract - YouTube is a huge video-sharing service with

hundreds of millions of users and hundreds of thousands of

videos being uploaded every day. Thus, recommendation of

YouTube videos to a single user is a challenging problem

which cannot be solved by simply reusing the prevailing

recommendation methods.

The paper presents a specific recommendation algorithm

for YouTube which relies on the data retrieved through the

YouTube Data API. A cloud-based application integrates

the proposed algorithm and offers a web interface to end

users. The paper presents a preliminary analysis of the

recommendation quality and lists YouTube Data API

limitations which influence the design of recommender

systems for YouTube videos.

I. INTRODUCTION

Recommender systems and algorithms stem from fields
such as cognitive science, approximation theory,
information retrieval and forecasting theories. In the mid-
1990s recommender systems have become an independent
research area and today we can classify recommender
algorithms in three basic categories: content-based
recommendations, collaborative recommendations and
hybrid approaches [1].

Content based recommendations predict future user
actions and preferences based on their past actions.
Collaborative recommendations try to find similarities
between a user and other users who have already used the
system, and based on past actions of similar users
recommend some content which might be interesting to
the user. Hybrid systems combine both approaches to
offer better recommendation performance.

Recommendation algorithms depend widely on the
available data set which captures past user behavior,
similarities between the data and also on context such as
time of year or user’s current location. Collaborative
recommendation systems typically produce their
recommendations based on user and item information
while taking into account user context. Thus, the two-
dimensional User×Item matrix which shows which items
have been consumed by all system users in the past is
extended to multidimensional space to take context
information into consideration. The easiest way to solve
the problem related to context and avoid extending the
matrix to multidimensional space is reduction-based
recommendation proposed in [2]. Reduction based
recommendation uses only ratings that correspond to the
specified context and reduces greatly the input dataset.

YouTube recommendation is a specific problem which
cannot be solved by simply reusing existing

recommendation methods. There are about 485,000,000
videos in repository [4] and that number is growing every
minute. Approximately, 48 hours of video are uploaded
every minute, resulting in nearly 8 years of content
uploaded every day [5]. A large number of users and great
dynamicity of YouTube content represent special
challenges to recommender systems. Moreover, YouTube
gives limited access to user and video information through
the YouTube Data API which represent another major
difficulty. For example, it is not possible to access a
viewing history for a user but it is possible to find out
which videos a user has added to his/her favorites or
uploaded over time and also which videos a user has rated
positively (within the last 60 days [6]. By reusing such
data, a User×Item matrix would be almost a zero matrix
because the probability that two users have added the
same video to their favorites is very small. Therefore, the
standard collaborative recommendation methods are not
applicable. The problem with content based approaches is
that almost every user has a set of videos (his favorites
and likes) which is too small, and if a recommender
systems would use such small amount of information
regarding a user to find the right video from the set of
millions of videos in the YouTube repository, the resulting
recommendation quality would be extremely poor.
Therefore, we propose a different approach which is
specific for YouTube recommendation.

In this paper we describe our algorithm and initial
experimental evaluation of our algorithm. The paper is
organized as follows: In Section 2 we present our
algorithm and the idea behind it. Section 3 describes the
implementation of the algorithm and related technologies.
Section 4 preliminary evaluation results of the
recommender system while Section 5 closes the paper
with conclusions and lists possible system improvements.

II. ALGORITHM DESCRIPTION

Since we have concluded that a content-based approach
is simply inapplicable for YouTube recommendation in
any form because of the lack of usable information about
a user, we have decided to find another criterion to
identify similar users for a target user U for whom the
recommendation is made. Of course, the limitation is the
aforementioned set of data that we have access to via the
YouTube API.

We can get a list of user's friends, but recommendation
of videos that his/her friends have liked in the past is
probably not a good solution for many reasons. The user
does not have to share the same taste as his friends, and it
is likely that the user will share videos with his friend who
have the same taste as he/she (YouTube has an option

share) while a large number of users do not have many
friends on YouTube. Thus, as users that are most similar
to user U (his related users), we have decided to choose
those users that have uploaded videos which user U has
rated positively or added to favorites. The assumption is
that if user U has liked a video which the user R has
uploaded in such a degree that he added that video to
favorites or rated it positively, the user U will probably
also like other videos which user R uploads, rates
positively or adds to his favorites. This assumption is
similar to the follower effect which is characteristic for
Twitter, where user U is the follower of user R. However,
we have realized that this assumption could be valid only
for those videos that are in the same category as the video
which user U likes. For example, if user U liked a music
video which user R uploaded, it is likely that user U and
user R have the same taste in music. However, we cannot
make any assumption about the interests of user U in other
categories like sports or entertainment compared to user
R.

The first step of the algorithm finds all videos that user
U has liked or added to favorites in the past, and then it
identifies the users that have uploaded those videos and
the categories of those videos. Those are the related users
of user U. This information is stored for every user and is
updated at each subsequent rerun of the algorithm (login
to the system or request for a recommendation). The
information is stored per each user as a
Related_user×Category matrix which gives the number of
videos from a given category which user U has liked or
added to favorites from a related user. Since the matrix
will most probably be very scarce (it seems very unlikely
that one user will be related to another in more than one or
two categories) it is most appropriate, in our opinion, to
use a data structure like a map (dictionary) to store it.

The second step of the algorithm finds all the videos
that the related users of a user U have liked, added to
favorites or uploaded in the same category which relates
the two users. Those videos are considered to be of
interest to user U. It is obvious that the recommendations
will be better for more active users i.e. users with greater
number of related users. The assumptions are that the
users who upload videos are active YouTube users, as it is
often the case with such users, and that user U has videos
that he/she added to favorites or has positively rated.

Finally, after obtaining videos of all related users
which represent potential recommendations, we have to
rank them. For that we have decided to use the
information about the number of views of each video
(viewCount) and the number of times a video had been
positively (likeCount) or negatively (dislikeCount)
evaluated. That information represents, in a way, the
recommendation of the whole YouTube community. We
also took into account two parameters that are specific for
our algorithm. Those are the appearanceNumber and
userFactor. All parameters used for ranking of the videos
are summarized in table 1.

For the purpose of ranking we take the logarithm of
the number of views of a video to get an order of
magnitude because the number of views of a video spans
from several tens to several hundreds of millions and we

wanted it to have a relatively equal part in the ranking
process as the other parameters. The overall assessment of
a video we decided to punish according to the proportion
of negative evaluations of the video. We found
empirically that it is desirable for better results to
attenuate the impact of that portion and therefore we
decided to take the square root. If that is not done then
videos with very few views and even fewer ratings, all of
which are positive, are ranked very high. That is not really
good because there are a lot of such videos which are
liked by close friends and acquaintances, but few others
would find them interesting.

If more than one related users have added the same
video in their favorites or liked it, extra weight is given to
the video in the ranking process. This is represented by the
appearanceNumber parameter. For example, if a video
appears in the potential recommendations of two related
users then the appearanceNumber of that video is set to 2.
However, a situation in which the appearanceNumber is
greater than 1 will be very rarely satisfied because the
probability that two or more related users in a limited
period of time have added to favorites or positively rated
the same video (among all the videos on YouTube) is very
small. The userFactor is the information that is held by
the Related_user×Category matrix, i.e. it is the number of
times user U liked or favorited a video from a related user
in a specific category. Since the userFactor is less
significant than the appearanceNumber and is much more
likely to be greater than 1 we attenuated the value of
userFactor by using the square root.

The final formula used for ranking videos identified as
potentially interesting to a user is the following:

(1)Number appearanceuserFactor

likeCountntdislikeCou

ntdislikeCou

unt)log(viewCo
rating

where rating is a score given to each video.

In cases when the dislikeCount is equal to zero it is
necessary to make a correction of its value. We found
empirically that in this case it is desirable to set the value

TABLE 1. – RANKING PARAMETERS

Parameter name Parameter description

viewCount number of views of the YouTube video

likeCount
number of positive ratings (likes) of the

YouTube video

dislikeCount
number of negative ratings (dislikes) of
the YouTube video

userFactor

the number of times the user liked or

favorited a video in the same category as

this video that the related user, in whos

activity this video was found, uploaded

appearanceNumber
the number of times this exact video is
recommended in the current

recommendation (usualy one)

of the dislikeCount to one. If a video is really good and
has a large number of positive ratings and a large number
of views then adding a one dislike to such video will not
have a major impact on its overall rating. If a video has a
small number of positive ratings and a small number of
views this will greatly reduce its rating, but this effect is
positive because we usually don't want to recommend
such a video (obviously this video is interesting to a small
group of people, and therefore it is not likely that it will be
interesting to user U).

III. IMPLEMENTATION

The recommender system is implemented as a web-
application

1
 written in the Java programming language on

the Google App Engine cloud computing platform [7]
using YouTube Data API libraries for extracting required
data sets from YouTube.

The user interface enables the user to enter his/her
YouTube username and choose among two options –
make a new recommendation or view past
recommendations.

When a user makes the first request for a
recommendation, the application contacts YouTube and
gets all the favorite videos of that user and all the videos
that he liked (rated positively) as far in the past as the
YouTube API will let it or keeps track itself (60 days).
The information about the users who uploaded those
videos and the categories of those videos are extracted and
stored in the Google App Engine datastore as RelatedUser
entities which represent the Related_user×Category matrix
for that user. Also, a User entity is stored containing the
username and the date and time of the last
recommendation request for that user. Every subsequent
time that same user makes a recommendation request the
application retrieves from YouTube only the activity
(liked and favorite videos) from the last time the user
made a recommendation request and updates the
Related_user×Category matrix for that user, i.e. updates
some and adds new RelatedUser entities if necessary.

After all the related users and corresponding categories
for a user are found the application contacts YouTube
again and retrieves all the videos the related users have
liked, added to favorites or uploaded (in the right
category) since the last recommendation request of the
user using the application (or 14 days if first use). First the
appearanceNumber and userFactor parameters for each
video are set and then the rating for each video is
calculated by the algorithm formula. The videos are then
sorted by the calculated rating in a descending order and
the first 25 are taken as the recommendation.

Before the recommended videos are shown to the user
a Recommendation entity is made with two parameters:
time and date of its making and the time span it took for
recommendation. Also, for each of the recommended
videos a RecommendedVideo entity is made which are all
put as children of the just made Recommendation entity
and which hold information about the videos that were
recommended. That is needed for users to be able the see
their past recommendation and more importantly for the

1
 http://givemeclips.appspot.com

application to be able to note if the recommended video
has been clicked on by the user it was recommended to.

If the user chooses on the main page to view his past
recommendations the application simply gathers
information about the past Recommendation entities of
that user and presents them to the user in the form of the
time the recommendation was made and the time span it
was made on. If a user clicks on one of them the past
recommendation is shown in its exact original form. The
application simply does that by finding the relevant
RecommendedVideo entities in the datastore.

Whenever a user of the application clicks on a
recommended video the link does not take him directly to
the URL of the video. Instead it takes him to a separate
URL on the application on which operates a servlet that
takes the information from the GET request and based on
them retrieves the relevant RecommendedVideo entity
from the datastore. It gets the real URL of the video from
the retrieved RecommendedVideo entity but before it
redirects the user to that URL it marks the entity (or rather
the video that the entity represents) as clicked and puts it
back in the datastore. In that way the usage of the
application can be easily tracked and some simple tests of
quality of the recommendations can be made.

IV. RESULTS

In order to view the results objectively the reader
should know that the collected data for the evaluation of
the algorithm was collected from very similar people in
very similar circumstances and should also be aware of
the fact that we made a small improvement on the
algorithm at the time of testing which we believe
improves the quality of the recommendations greatly. At
first the maximum amount of time (60 days) of recent
activity of related users was used for the first
recommendation. We realized that because of that the first
recommendation will have a great chance of having high
ranked videos that the user had already watched and that it
will divert the user from using the application again. So
we decided to reduce the time span for that first
recommendation to 14 days, a time period we considered
long enough to generate sufficient videos and yet short
enough for those videos to be recent. Because of that the
data collected after the change will be presented
separately.

The application was used by a total of 113 users. Of
those 113 users 29 have no related users and were thus
useless for the algorithm. There are two reasons why a
user would have no related users. The first is the obvious
one – the user has no favorites and has not rated any video
in the 60 days prior to using the application and the
second is that the user’s YouTube profile is private. Those
29 users are not taken into further account; all calculations
are made on the remaining 84.

The average number of related users over all users is
15.86. It is interesting to observe the average number of
related users of only the users who have made more than
one recommendation and those who have made only the
first and never came back. The average number of related
users of the users that made only one recommendation is
14.84 while the average number of related users of the

users that made 2 or more recommendations is 27.92. This
is a strong indication that users with more related users get
better recommendations.

Of the 84 valid users 7 had very few (1 to 3) and
apparently very inactive related users because no videos
were recommended to them. If we disregard those 7 users
we are left with 77 users of which 13 have returned after
making the first recommendation, which is 16.88%. If we
now separate those 77 users by the time span of their first
recommendation (60 and 14 days i.e. before and after the
change) we get a group of 52 and a group of 25 users
respectively. Of those 52 users that made the first
recommendation before the change to the application 7
returned after the first recommendation, which is 13.46%.
Of the other 25 users 6 returned, which makes 24%. This
clearly indicates that the change to the
application/algorithm was a positive one.

Since the first recommendations are a bit different than
the others because they cover a longer time period and
often recommend a lot more videos, at least in the small
dataset we have gathered, we decided to analyze them
separately.

The average number of videos per recommendation
for all recommendations is 18.10 and the average number
of visited videos per recommendation is 1.69. For only the
first recommendations that were made on a 60 day time
span those averages are 22.96 and 1.60. For only the first
recommendations that were made on a 14 day time span
those averages are 17.36 and 1.36, which is expected. The
most interesting results are the averages for the
recommendations that were not the first. They have a lot
lower average of videos per recommendation, only 9.44,
but also a quite higher average of visited videos per
recommendation - 2.18. This could be interpreted as an
indicator that, although later recommendations have fewer
videos those videos are more interesting. That is
consistent with the idea behind this algorithm which is to
recommend videos that the user would normally run into
very hard because they are not very popular yet or got lost
in the sea of videos, but that are interesting to the user
because of his/hers specific interests.

The collected data is also used for evaluation of the
ranking formula (1). The most visited video is the first
video i.e. the best ranked video. The first video of a
recommendation was selected 33 times in 104
recommendations and out of 175 videos selected in total.
Top 5 videos were selected a total of 83 times, and top 10
videos a total of 118 times. That means that 47.4% of all
selected recommended videos were ranked among top 5
and 67.4% among top 10 videos in a recommendation.
These results indicate that better ranked videos are in fact
more interesting to the user and that the use of formula (1)
is justified.

V. DISCUSSION AND CONCLUSION

In this paper a recommendation algorithm for YouTube
was presented which relies on the data retrieved through
the YouTube Data API. This algorithm finds all YouTube
users who uploaded videos which the target user has liked
or added to favorites and categories of these videos and
then stores that information in a Related_user×Category

matrix. The algorithm then finds the videos which those
related users had recently uploaded, liked or added to
favorites and that are of the corresponding category and
ranks them using formula (1) to form a recommendation.

Our recommendation algorithm depends a lot on the
activity of the related users or the user itself. If a user is
not very active on YouTube and has a few related users,
the recommendation will most probably not work very
well for him/her. This problem is a consequence of the
limited information that we can obtain using YouTube
Data API.

A definite specificity of the algorithm is the amount of
the recommended videos. Since they are generated from
the recent activity of the related users there will be only a
small amount of them on a day-to-day basis, unless, of
course, a user has a huge amount of related users. But
from the testing that we managed to do in this short period
of time the amount of related users ranges from just a few
to a maximum of 45. The problem lies in the fact that
most people just watch YouTube videos. A very large
amount of them do not even have user accounts, and a lot
of others use them very rarely and for specific purposes
(music playlists, etc.). Average YouTube users rarely rate
(click LIKE) on a video they like. That is obvious from
simply observing the number of view counts on YouTube
videos in contrast to the number of ratings. On the other
side, for users that do have accounts and do rate videos
occasionally, when they really like something, this
recommendation algorithms makes a really personally
tailored recommendation made of videos that will not
show up that easily on their standard YouTube
recommendation. Thus our algorithm can be used in
cooperation with a more standard recommendation like
e.g. the YouTube official recommendation which can
recommend extra videos when our algorithm cannot find a
sufficient number of videos

2
.

There is a possibility to expand the algorithm so that it
always generates enough recommended videos. This
could be done by making the algorithm recursive in a
manner that the related users of the related users of a user
can be found and their activity checked. In our opinion
this would be unscalable network-wise because all that
activity generates traffic to and from YouTube. But if the
algorithm would be run on YouTube servers directly that
could be a possible solution.

Of course, that would then solve the biggest setback of
the whole problem of recommending YouTube videos and
that is the limitations of the information that can be
retrieved from YouTube. The biggest limitation of all for
this algorithm in its current form is the inability to catch
events like negative ratings. For example, a user rates a
video positively and because of it gets a related user. The
user then gets a recommendation based on that related
user and rates a video negatively. The related user that
was responsible for that negative rating should be
removed from the related users list. But that information is
not retrievable. One possible, indirect way to solve this
problem is to remove from the related users list those

2
 The YouTube official recommendation for a user is retrievable by

YouTube Data API.

related users that are responsible for recommended videos
that the user clicks on very rarely or never in the
recommendations presented to him.

Due to all the limitations we must conclude that
recommending YouTube videos in this kind of manner
can hardly be a substitution for the official YouTube
recommendation since it lacks information and speed
because of the way the information that can be retrieved is
retrieved. But we believe that this is a good new way to
look at recommendation problems in services with similar
characteristics as YouTube, which are very dynamic, and
we argue that our idea of finding related users and
generating a user specific reduced User×Item matrix has
potential which would be worth exploring by
implementing it on a real system with immediate access to
all relevant information.

REFERENCES

[1] G. Adomavicius and A. Tuzhilin, ”Toward the next generation of

recommender systems: A survey of the state-of-the-art and
possible extensions,“ IEEE Transactions on Knowledge and Data
Engineering, Vol. 17, No. 6, pp. 734–749, June 2005.

[2] G. Adomavicius, R. Sankaranarayanan, S. Sen, and A. Tuzhilin,
“Incorporating contextual information in recommender systems
using a multidimensional approach,” ACM Trans. Information
Systems, Vol. 23, No. 1, Jan. 2005.

[3] M. Deshpande, G. Karypis, “Item-based top-N recommendation
algorithms“, ACM Transactions on Information Systems, Vol. 22,
No. 1, pp. 143-177, Jan. 2004.

[4] YouTube Search Results for *,
http://www.youtube.com/results?search_query=*&search=Search

[5] YouTube Statistics, http://www.youtube.com/t/press_statistics

[6] YouTube APIs and Tools, http://code.google.com/intl/hr-
HR/apis/youtube/getting_started.html#data_api

[7] What is Google App Engine?,
http://code.google.com/appengine/docs/whatisgoogleappengine.ht
ml

http://www.youtube.com/results?search_query=*&search=Search
http://www.youtube.com/t/press_statistics
http://code.google.com/intl/hr-HR/apis/youtube/getting_started.html#data_api
http://code.google.com/intl/hr-HR/apis/youtube/getting_started.html#data_api
http://code.google.com/appengine/docs/whatisgoogleappengine.html
http://code.google.com/appengine/docs/whatisgoogleappengine.html

