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Abstract - YouTube is a huge video-sharing service with 

hundreds of millions of users and hundreds of thousands of 

videos being uploaded every day. Thus, recommendation of 

YouTube videos to a single user is a challenging problem 

which cannot be solved by simply reusing the prevailing 

recommendation methods. 

The paper presents a specific recommendation algorithm 

for YouTube which relies on the data retrieved through the 

YouTube Data API. A cloud-based application integrates 

the proposed algorithm and offers a web interface to end 

users. The paper presents a preliminary analysis of the 

recommendation quality and lists YouTube Data API 

limitations which influence the design of recommender 

systems for YouTube videos. 

I. INTRODUCTION 

Recommender systems and algorithms stem from fields 
such as cognitive science, approximation theory, 
information retrieval and forecasting theories. In the mid-
1990s recommender systems have become an independent 
research area and today we can classify recommender 
algorithms in three basic categories: content-based 
recommendations, collaborative recommendations and 
hybrid approaches [1].  

Content based recommendations predict future user 
actions and preferences based on their past actions. 
Collaborative recommendations try to find similarities 
between a user and other users who have already used the 
system, and based on past actions of similar users 
recommend some content which might be interesting to 
the user. Hybrid systems combine both approaches to 
offer better recommendation performance. 

Recommendation algorithms depend widely on the 
available data set which captures past user behavior, 
similarities between the data and also on context such as 
time of year or user’s current location. Collaborative 
recommendation systems typically produce their 
recommendations based on user and item information 
while taking into account user context. Thus, the two-
dimensional User×Item matrix which shows which items 
have been consumed by all system users in the past is 
extended to multidimensional space to take context 
information into consideration. The easiest way to solve 
the problem related to context and avoid extending the 
matrix to multidimensional space is reduction-based 
recommendation proposed in [2]. Reduction based 
recommendation uses only ratings that correspond to the 
specified context and reduces greatly the input dataset. 

YouTube recommendation is a specific problem which 
cannot be solved by simply reusing existing 

recommendation methods. There are about 485,000,000 
videos in repository [4] and that number is growing every 
minute. Approximately, 48 hours of video are uploaded 
every minute, resulting in nearly 8 years of content 
uploaded every day [5]. A large number of users and great 
dynamicity of YouTube content represent special 
challenges to recommender systems. Moreover, YouTube 
gives limited access to user and video information through 
the YouTube Data API which represent another major 
difficulty. For example, it is not possible to access a 
viewing history for a user but it is possible to find out 
which videos a user has added to his/her favorites or 
uploaded over time and also which videos a user has rated 
positively (within the last 60 days [6]. By reusing such 
data, a User×Item matrix would be almost a zero matrix 
because the probability that two users have added the 
same video to their favorites is very small. Therefore, the 
standard collaborative recommendation methods are not 
applicable. The problem with content based approaches is 
that almost every user has a set of videos (his favorites 
and likes) which is too small, and if a recommender 
systems would use such small amount of information 
regarding a user to find the right video from the set of 
millions of videos in the YouTube repository, the resulting 
recommendation quality would be extremely poor. 
Therefore, we propose a different approach which is 
specific for YouTube recommendation. 

In this paper we describe our algorithm and initial 
experimental evaluation of our algorithm. The paper is 
organized as follows: In Section 2 we present our 
algorithm and the idea behind it. Section 3 describes the 
implementation of the algorithm and related technologies. 
Section 4 preliminary evaluation results of the 
recommender system while Section 5 closes the paper 
with conclusions and lists possible system improvements. 

II. ALGORITHM DESCRIPTION 

Since we have concluded that a content-based approach 
is simply inapplicable for YouTube recommendation in 
any form because of the lack of usable information about 
a user, we have decided to find another criterion to 
identify similar users for a target user U for whom the 
recommendation is made. Of course, the limitation is the 
aforementioned set of data that we have access to via the 
YouTube API. 

We can get a list of user's friends, but recommendation 
of videos that his/her friends have liked in the past is 
probably not a good solution for many reasons. The user 
does not have to share the same taste as his friends, and it 
is likely that the user will share videos with his friend who 
have the same taste as he/she (YouTube has an option 



share) while a large number of users do not have many 
friends on YouTube. Thus, as users that are most similar 
to user U (his related users), we have decided to choose 
those users that have uploaded videos which user U has 
rated positively or added to favorites. The assumption is 
that if user U has liked a video which the user R has 
uploaded in such a degree that he added that video to 
favorites or rated it positively, the user U will probably 
also like other videos which user R uploads, rates 
positively or adds to his favorites. This assumption is 
similar to the follower effect which is characteristic for 
Twitter, where user U is the follower of user R. However, 
we have realized that this assumption could be valid only 
for those videos that are in the same category as the video 
which user U likes. For example, if user U liked a music 
video which user R uploaded, it is likely that user U and 
user R have the same taste in music. However, we cannot 
make any assumption about the interests of user U in other 
categories like sports or entertainment compared to user 
R. 

The first step of the algorithm finds all videos that user 
U has liked or added to favorites in the past, and then it 
identifies the users that have uploaded those videos and 
the categories of those videos. Those are the related users 
of user U. This information is stored for every user and is 
updated at each subsequent rerun of the algorithm (login 
to the system or request for a recommendation). The 
information is stored per each user as a 
Related_user×Category matrix which gives the number of 
videos from a given category which user U has liked or 
added to favorites from a related user. Since the matrix 
will most probably be very scarce (it seems very unlikely 
that one user will be related to another in more than one or 
two categories) it is most appropriate, in our opinion, to 
use a data structure like a map (dictionary) to store it. 

The second step of the algorithm finds all the videos 
that the related users of a user U have liked, added to 
favorites or uploaded in the same category which relates 
the two users. Those videos are considered to be of 
interest to user U. It is obvious that the recommendations 
will be better for more active users i.e. users with greater 
number of related users. The assumptions are that the 
users who upload videos are active YouTube users, as it is 
often the case with such users, and that user U has videos 
that he/she added to favorites or has positively rated. 

Finally, after obtaining videos of all related users 
which represent potential recommendations, we have to 
rank them. For that we have decided to use the 
information about the number of views of each video 
(viewCount) and the number of times a video had been 
positively (likeCount) or negatively (dislikeCount) 
evaluated. That information represents, in a way, the 
recommendation of the whole YouTube community. We 
also took into account two parameters that are specific for 
our algorithm. Those are the appearanceNumber and 
userFactor. All parameters used for ranking of the videos 
are summarized in table 1. 

For the purpose of ranking we take the logarithm of 
the number of views of a video to get an order of 
magnitude because the number of views of a video spans 
from several tens to several hundreds of millions and we 

wanted it to have a relatively equal part in the ranking 
process as the other parameters. The overall assessment of 
a video we decided to punish according to the proportion 
of negative evaluations of the video. We found 
empirically that it is desirable for better results to 
attenuate the impact of that portion and therefore we 
decided to take the square root. If that is not done then 
videos with very few views and even fewer ratings, all of 
which are positive, are ranked very high. That is not really 
good because there are a lot of such videos which are 
liked by close friends and acquaintances, but few others 
would find them interesting. 

If more than one related users have added the same 
video in their favorites or liked it, extra weight is given to 
the video in the ranking process. This is represented by the 
appearanceNumber parameter. For example, if a video 
appears in the potential recommendations of two related 
users then the appearanceNumber of that video is set to 2. 
However, a situation in which the appearanceNumber is 
greater than 1 will be very rarely satisfied because the 
probability that two or more related users in a limited 
period of time have added to favorites or positively rated 
the same video (among all the videos on YouTube) is very 
small. The userFactor is the information that is held by 
the Related_user×Category matrix, i.e. it is the number of 
times user U liked or favorited a video from a related user 
in a specific category. Since the userFactor is less 
significant than the appearanceNumber and is much more 
likely to be greater than 1 we attenuated the value of 
userFactor by using the square root. 

 

The final formula used for ranking videos identified as 
potentially interesting to a user is the following: 
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where rating is a score given to each video.  

In cases when the dislikeCount is equal to zero it is 
necessary to make a correction of its value. We found 
empirically that in this case it is desirable to set the value 

TABLE 1. – RANKING PARAMETERS 

 

Parameter name Parameter description 

viewCount number of views of the YouTube video 

likeCount 
number of positive ratings (likes) of the 

YouTube video 

dislikeCount 
number of negative ratings (dislikes) of 
the YouTube video 

userFactor 

the number of times the user liked or 

favorited a video in the same category as 

this video that the related user, in whos 

activity this video was found, uploaded 

appearanceNumber 
the number of times this exact video is 
recommended in the current 

recommendation (usualy one) 

 



of the dislikeCount to one. If a video is really good and 
has a large number of positive ratings and a large number 
of views then adding a one dislike to such video will not 
have a major impact on its overall rating. If a video has a 
small number of positive ratings and a small number of 
views this will greatly reduce its rating, but this effect is 
positive because we usually don't want to recommend 
such a video (obviously this video is interesting to a small 
group of people, and therefore it is not likely that it will be 
interesting to user U). 

III. IMPLEMENTATION 

The recommender system is implemented as a web-
application

1
 written in the Java programming language on 

the Google App Engine cloud computing platform [7] 
using YouTube Data API libraries for extracting required 
data sets from YouTube. 

The user interface enables the user to enter his/her 
YouTube username and choose among two options – 
make a new recommendation or view past 
recommendations.  

When a user makes the first request for a 
recommendation, the application contacts YouTube and 
gets all the favorite videos of that user and all the videos 
that he liked (rated positively) as far in the past as the 
YouTube API will let it or keeps track itself (60 days). 
The information about the users who uploaded those 
videos and the categories of those videos are extracted and 
stored in the Google App Engine datastore as RelatedUser 
entities which represent the Related_user×Category matrix 
for that user. Also, a User entity is stored containing the 
username and the date and time of the last 
recommendation request for that user. Every subsequent 
time that same user makes a recommendation request the 
application retrieves from YouTube only the activity 
(liked and favorite videos) from the last time the user 
made a recommendation request and updates the 
Related_user×Category matrix for that user, i.e. updates 
some and adds new RelatedUser entities if necessary. 

After all the related users and corresponding categories 
for a user are found the application contacts YouTube 
again and retrieves all the videos the related users have 
liked, added to favorites or uploaded (in the right 
category) since the last recommendation request of the 
user using the application (or 14 days if first use). First the 
appearanceNumber and userFactor parameters for each 
video are set and then the rating for each video is 
calculated by the algorithm formula. The videos are then 
sorted by the calculated rating in a descending order and 
the first 25 are taken as the recommendation. 

Before the recommended videos are shown to the user 
a Recommendation entity is made with two parameters: 
time and date of its making and the time span it took for 
recommendation. Also, for each of the recommended 
videos a RecommendedVideo entity is made which are all 
put as children of the just made Recommendation entity 
and which hold information about the videos that were 
recommended. That is needed for users to be able the see 
their past recommendation and more importantly for the 
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application to be able to note if the recommended video 
has been clicked on by the user it was recommended to. 

If the user chooses on the main page to view his past 
recommendations the application simply gathers 
information about the past Recommendation entities of 
that user and presents them to the user in the form of the 
time the recommendation was made and the time span it 
was made on. If a user clicks on one of them the past 
recommendation is shown in its exact original form. The 
application simply does that by finding the relevant 
RecommendedVideo entities in the datastore.  

Whenever a user of the application clicks on a 
recommended video the link does not take him directly to 
the URL of the video. Instead it takes him to a separate 
URL on the application on which operates a servlet that 
takes the information from the GET request and based on 
them retrieves the relevant RecommendedVideo entity 
from the datastore. It gets the real URL of the video from 
the retrieved RecommendedVideo entity but before it 
redirects the user to that URL it marks the entity (or rather 
the video that the entity represents) as clicked and puts it 
back in the datastore. In that way the usage of the 
application can be easily tracked and some simple tests of 
quality of the recommendations can be made. 

IV. RESULTS 

In order to view the results objectively the reader 
should know that the collected data for the evaluation of 
the algorithm was collected from very similar people in 
very similar circumstances and should also be aware of 
the fact that we made a small improvement on the 
algorithm at the time of testing which we believe 
improves the quality of the recommendations greatly. At 
first the maximum amount of time (60 days) of recent 
activity of related users was used for the first 
recommendation. We realized that because of that the first 
recommendation will have a great chance of having high 
ranked videos that the user had already watched and that it 
will divert the user from using the application again. So 
we decided to reduce the time span for that first 
recommendation to 14 days, a time period we considered 
long enough to generate sufficient videos and yet short 
enough for those videos to be recent. Because of that the 
data collected after the change will be presented 
separately. 

The application was used by a total of 113 users. Of 
those 113 users 29 have no related users and were thus 
useless for the algorithm. There are two reasons why a 
user would have no related users. The first is the obvious 
one – the user has no favorites and has not rated any video 
in the 60 days prior to using the application and the 
second is that the user’s YouTube profile is private. Those 
29 users are not taken into further account; all calculations 
are made on the remaining 84. 

The average number of related users over all users is 
15.86. It is interesting to observe the average number of 
related users of only the users who have made more than 
one recommendation and those who have made only the 
first and never came back. The average number of related 
users of the users that made only one recommendation is 
14.84 while the average number of related users of the 



users that made 2 or more recommendations is 27.92. This 
is a strong indication that users with more related users get 
better recommendations. 

Of the 84 valid users 7 had very few (1 to 3) and 
apparently very inactive related users because no videos 
were recommended to them. If we disregard those 7 users 
we are left with 77 users of which 13 have returned after 
making the first recommendation, which is 16.88%. If we 
now separate those 77 users by the time span of their first 
recommendation (60 and 14 days i.e. before and after the 
change) we get a group of 52 and a group of 25 users 
respectively. Of those 52 users that made the first 
recommendation before the change to the application 7 
returned after the first recommendation, which is 13.46%. 
Of the other 25 users 6 returned, which makes 24%. This 
clearly indicates that the change to the 
application/algorithm was a positive one. 

Since the first recommendations are a bit different than 
the others because they cover a longer time period and 
often recommend a lot more videos, at least in the small 
dataset we have gathered, we decided to analyze them 
separately. 

The average number of videos per recommendation 
for all recommendations is 18.10 and the average number 
of visited videos per recommendation is 1.69. For only the 
first recommendations that were made on a 60 day time 
span those averages are 22.96 and 1.60. For only the first 
recommendations that were made on a 14 day time span 
those averages are 17.36 and 1.36, which is expected. The 
most interesting results are the averages for the 
recommendations that were not the first. They have a lot 
lower average of videos per recommendation, only 9.44, 
but also a quite higher average of visited videos per 
recommendation - 2.18. This could be interpreted as an 
indicator that, although later recommendations have fewer 
videos those videos are more interesting. That is 
consistent with the idea behind this algorithm which is to 
recommend videos that the user would normally run into 
very hard because they are not very popular yet or got lost 
in the sea of videos, but that are interesting to the user 
because of his/hers specific interests. 

The collected data is also used for evaluation of the 
ranking formula (1). The most visited video is the first 
video i.e. the best ranked video. The first video of a 
recommendation was selected 33 times in 104 
recommendations and out of 175 videos selected in total. 
Top 5 videos were selected a total of 83 times, and top 10 
videos a total of 118 times. That means that 47.4% of all 
selected recommended videos were ranked among top 5 
and 67.4% among top 10 videos in a recommendation. 
These results indicate that better ranked videos are in fact 
more interesting to the user and that the use of formula (1) 
is justified. 

V. DISCUSSION AND CONCLUSION 

In this paper a recommendation algorithm for YouTube 
was presented which relies on the data retrieved through 
the YouTube Data API. This algorithm finds all YouTube 
users who uploaded videos which the target user has liked 
or added to favorites and categories of these videos and 
then stores that information in a Related_user×Category 

matrix. The algorithm then finds the videos which those 
related users had recently uploaded, liked or added to 
favorites and that are of the corresponding category and 
ranks them using formula (1) to form a recommendation.   

Our recommendation algorithm depends a lot on the 
activity of the related users or the user itself. If a user is 
not very active on YouTube and has a few related users, 
the recommendation will most probably not work very 
well for him/her. This problem is a consequence of the 
limited information that we can obtain using YouTube 
Data API. 

A definite specificity of the algorithm is the amount of 
the recommended videos. Since they are generated from 
the recent activity of the related users there will be only a 
small amount of them on a day-to-day basis, unless, of 
course, a user has a huge amount of related users. But 
from the testing that we managed to do in this short period 
of time the amount of related users ranges from just a few 
to a maximum of 45. The problem lies in the fact that 
most people just watch YouTube videos. A very large 
amount of them do not even have user accounts, and a lot 
of others use them very rarely and for specific purposes 
(music playlists, etc.). Average YouTube users rarely rate 
(click LIKE) on a video they like. That is obvious from 
simply observing the number of view counts on YouTube 
videos in contrast to the number of ratings. On the other 
side, for users that do have accounts and do rate videos 
occasionally, when they really like something, this 
recommendation algorithms makes a really personally 
tailored recommendation made of videos that will not 
show up that easily on their standard YouTube 
recommendation. Thus our algorithm can be used in 
cooperation with a more standard recommendation like 
e.g. the YouTube official recommendation which can 
recommend extra videos when our algorithm cannot find a 
sufficient number of videos

2
. 

There is a possibility to expand the algorithm so that it 
always generates enough recommended videos. This 
could be done by making the algorithm recursive in a 
manner that the related users of the related users of a user 
can be found and their activity checked. In our opinion 
this would be unscalable network-wise because all that 
activity generates traffic to and from YouTube. But if the 
algorithm would be run on YouTube servers directly that 
could be a possible solution. 

Of course, that would then solve the biggest setback of 
the whole problem of recommending YouTube videos and 
that is the limitations of the information that can be 
retrieved from YouTube. The biggest limitation of all for 
this algorithm in its current form is the inability to catch 
events like negative ratings. For example, a user rates a 
video positively and because of it gets a related user. The 
user then gets a recommendation based on that related 
user and rates a video negatively. The related user that 
was responsible for that negative rating should be 
removed from the related users list. But that information is 
not retrievable. One possible, indirect way to solve this 
problem is to remove from the related users list those 
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related users that are responsible for recommended videos 
that the user clicks on very rarely or never in the 
recommendations presented to him. 

Due to all the limitations we must conclude that 
recommending YouTube videos in this kind of manner 
can hardly be a substitution for the official YouTube 
recommendation since it lacks information and speed 
because of the way the information that can be retrieved is 
retrieved. But we believe that this is a good new way to 
look at recommendation problems in services with similar 
characteristics as YouTube, which are very dynamic, and 
we argue that our idea of finding related users and 
generating a user specific reduced User×Item matrix has 
potential which would be worth exploring by 
implementing it on a real system with immediate access to 
all relevant information. 
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