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Abstract

This essay describes the basics of homotopy theory, its relation to group theory and its use in

several branches of modern physics for characterising topological defects. The goal of the essay

is to show that this is important in condensed matter physics, cosmology and elementary particle

physics, branches of physics not usually related, and to provide a succinct and intuitive introduction

to the subject and understanding of the phenomena. At least basic knowledge of (Lie) group theory

is assumed and basic understanding of quantum field theory is necessary to follow examples from

cosmology and elementary particle physics.
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1 Introduction

Whenever we inspect a physical quantity in space (or

spacetime) we first have to determine the set of val-

ues it can acquire at every point. Let’s call this the

parameter space1 R and let’s assume the parameter

space to be a manifold. Probably the most typical

example is that of spins in matter. If we limit spins

to a plane then we can represent them by unit vec-

tors in a plane and their parameter manifold is S1, a

circle, and if we allow them to point anywhere then

their parameter manifold is S2, a sphere.

In physics one is usually guided by criteria like min-

imization of energy and maximization of entropy to

find stable configurations. But a question arises if

some topological features of the physical and/or pa-

rameter space (dimensionality being the most basic

one) introduce additional criteria that have to be met

by a configuration, possibly preventing it from relax-

1In condensed matter physics the physical quantity would
be called an order parameter and the set of values the order pa-
rameter space, but in general it can be something more abstract
like a wave function in which case a more general terminology
such as manifold of internal states would be fitting, but also
in my opinion too clumsy and vague for our purposes.
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ing to the globally most favored one.

Topological defects are parts of the domain where the

quantity of interest is not necessarily everywhere well

defined and the configuration is unable to satisfy the

usual physical criteria (e.g. minimal energy) because

to attain it would cost infinite (or the practical equiva-

lent) energy. The reason for the infinite cost in energy

is that no local “surgery” (rearrangement of the phys-

ical quantity) would suffice but a change would have

to propagate infinitely far. The existence and some

limitations to the behaviour of such defects, consider-

ing only the topology of the physical and parameter

spaces, is best studied by a purely mathematical the-

ory called homotopy theory.

Considering these special, in a way non-optimal, con-

figurations of a physical parameter the questions of

their creation and dynamics also arise. Some of the

answers to the question of creation can be found in

phase transitions and symmetry breaking, usually re-

lated to very fundamental problems, but for less en-

ergetic and more common ones creation can result

from simpler things like external forces. Questions

of dynamics are mostly answered by non-topological,

physical considerations but some, like defects meet-

ing, coalescing or crossing, are partially answered by

homotopy theory itself, which we now move on to.

2 Homotopy theory

The basic idea of homotopy theory is to use contin-

uous deformation of objects in a topological space

to establish their equivalence. Topologically different

spaces will then have different classes of such equiv-

alent objects. Since members from different classes

of those objects cannot be deformed into one another

that can also tell us something about physics if we

map a physical quantity to such objects.

The simplest kind of a deformable object is a path, or

its closed form - a loop. Mathematically, a path on a

topological space X is a map γ : I → X where I =

[0, 1], and a loop (at x0) is a path with γ(0) = γ(1) =

x0 ∈ X, or put simply it’s end points being the same.

It is clear that a loop is essentially a circle, S1. This

definition can be easily generalized to n dimensions by

making a mapping γn : In → X where In = I×. . .×I
and identifying all boundary points as the same point,

i.e. s = x0,∀s ∈ ∂In where x0 ∈ X and ∂In =

{(s1, . . . , sn) ∈ In| at least one si = 0 or 1}. It should

also be clear that such an n-loop is essentially an n-

sphere, Sn.

The basis of homotopy theory is the “homotopic to”

relation between two n-loops α and β at x0 which is

formally defined as an existence of a continuous map

F : I × In → X such that:

i) F0(s) = α(s), ∀s ∈ In

ii) F1(s) = β(s), ∀s ∈ In (2.1)

iii) Ft(0) = Ft(1) = x0, ∀t ∈ I

The crucial thing is that the map be continuous in

which case it essentially represents a continuous de-

formation of α to β, as is depicted in figure 12. Such

a map is called a homotopy.

Figure 1: (a) representation of the formal definition,
(b) the idea of a continuous deformation

The most important thing to notice is that the de-

fined relation is an equivalence relation since a loop is

homotopic to itself, the relation is clearly symmetric

and if there exists a homotopy between α and β and

β and γ it’s trivial to construct a homotopy between

α and γ. Being an equivalence relation makes “homo-

topic to” separate (n-)loops naturally into equivalence

classes of loops that are topologically the same in an

intuitive sense3.

With loops defined in such a way it is easy to define

operations like the product and the inverse, which are

2This figure is taken from [1] where you can find the basics
of homotopy and homology theory presented a bit more for-
mally, more in depth and with more instructive figures. I also
recommend [2] for the same purpose.

3As is later commented, this is really the property of freely
homotopic loops and thus conjugacy classes of the equivalence
classes in the framework of homotopy groups. This distinction
is, however, only relevant in noncommutative homotopy groups.

2



needed to construct algebraic structures like groups.

The product of two (n-)loops is naturally defined by

just “gluing” them together, first going around one

and then around the other. Formally it is done by

reparametrisation, going twice as “faster” around each

one:

(α ∗ β)(s) =


α(2s) 0 ≤ s ≤ 1

2

β(2s− 1)
1

2
≤ s ≤ 1

(2.2)

The inverse of a loop is defined by going the other

way around it:

α−1(s) := α(1− s) (2.3)

ensuring that a product of a loop with its inverse

doesn’t “surround” anything, i.e. is always homotopic

to a constant path (a point).

2.1 Homotopy (fundamental) groups

The equivalence classes of homotopic loops, using the

defined product and inverse, form a group structure.

To prove it formally we need to define a product of

equivalence classes and an inverse of an equivalence

class and then show that the three conditions for a

group hold: associativity, the existence of a unit ele-

ment and an inverse element that in a product with

the original gives the unit element. Formal proofs can

be found in [1] and [2] but intuitively one only needs

to realise that:

a) a product of two loops α and β is homotopic to

all the loops that can be made by a product of

any two loops homotopic to α and β, i.e. [α ∗
β] = [α] ∗ [β], because if you can deform a loop

to α and another to β then you can also deform

their product to α ∗ β , and

b) a product of a loop and its inverse is not itself

a point but it is homotopic to a point, i.e. [α ∗
α−1] = [x0] .

From these two realisations it should be easy to see

why the equivalence classes of loops [α] form a group.

That group is called the fundamental group or the

first homotopy group π1(X) if we are using regular

1D loops and the nth homotopy group πn(X) if we

are using n-loops. For the sake of completeness it

should be said that homotopy groups are topological

invariants meaning that two homeomorphic topolog-

ical spaces must have the same homotopy groups or

put in other words, a homeomorphism preserves the

homotopy groups. Also, an important feature of the

homotopy groups is that the homotopy group of a di-

rect product of topological spaces is the direct sum of

their respective homotopy groups:

πn(X × Y ) ' πn(X)⊕ πn(Y ) (2.4)

To return to physics for a second, the basic idea of

the application of homotopy theory to physics is to

describe defects by looking at the values of a physi-

cal parameter on an n-loop surrounding a defect and

classifying it by the corresponding element of the nth

homotopy group.

One of the nuances I’ve left out in the preceding “de-

rivation” of homotopy groups is that I’ve been using

loops at a point, anchored at some x0, all the time, but

in the definition of the homotopy groups there is no

reference to any particular point. The reason is that

there always exists a natural isomorphism between ho-

motopy groups at any two points of a path-connected

manifold. Another nuance is that the isomorphisms

don’t have to be unique and that is related to the fact

that freely homotopic4 loops are not necessarily homo-

topic at a point, which is nicely seen in figure 2. The

Figure 2: Two loops f and g that are freely homotopic
but not homotopic at x

relation between freely homotopic and based homo-

topic loops is relatively simple with 1D loops where it

is directly related to the commutativity of π1(X) and

its conjugacy classes. I will elaborate on this a bit

4The definition of freely homotopic being the natural one
of continuous deformation without being anchored at any one
point.
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because it has to do with the physical consequences

of topological defects meeting, crossing or interacting

in some other way.

If π1(X) is commutative then its conjugacy classes are

made up of single elements and loops that are homo-

topic are also freely homotopic. In that case topolog-

ical defects like monopoles can combine into a single

topological defect without any ambiguity and depen-

dence on the way they are combined, and topological

defects like strings upon crossing just pass through

each other without entangling. If, however, π1(X)

is noncommutative then its conjugacy classes are not

trivial and loops are freely homotopic if they belong

in the same conjugacy class, meaning even if they are

not homotopic at a point. The combination of topo-

logical defects is then determined by the product of

conjugacy classes which can give an ambiguous answer

to the question of the conjugacy class of the resulting

topological defect and in fact the conjugacy class of

the resulting defect can depend on the path by which

the two defects were joined, relative to other defects in

the medium. The physical consequence of this is that

some defects can in some cases be “undone” by things

like splitting and combining after traversing a certain

path around some other defects (like in the biaxial

nematics example given later). In the case of cross-

ing string defects the noncommutativity of the homo-

topy group results in their entangling if the defects

belong to elements of the homotopy group that do not

commute. The physical consequences are that a new

string defect is created connecting the two and, since

a defect carries some energy, prevents the two orig-

inal defects from separating. Things like this would

be very hard to understand and predict without the

machinery of topology and homotopy theory.

A more detailed exposition of the nuances of isomor-

phisms, noncommutativity and free homotopicity I

mentioned here is given in [3] using a very intuitive

approach and a lot of insightful figures5.

2.1.1 Higher homotopy groups

Most of what has been presented so far is applica-

ble not only to the fundamental group but also to

5This review by N. D. Mermin gives a great introduction to
homotopy theory and topological defects in ordered media and
much of my understanding of the subject and the contents of
this essay is derived from it.

the higher homotopy groups, the only difference be-

ing that the objects being deformed are n-loops, or

equivalently n-spheres.

One of the biggest differences is that higher homo-

topy groups are always commutative, but that doesn’t

save them (or us) from the complications of the differ-

ence between homotopic and freely homotopic n-loops

and the resulting complications in the interactions of

topological defects described by those higher homo-

topy groups. The reason is that the said difference

fundamentally has to do with the uniqueness of the

isomorphisms between homotopy groups at different

points, and the connection between points is always

made by paths and is thus always related to π1(X).

More on that can also be found in [3] (sections III. B.

and IX. A.).

Higher homotopy groups are needed because topolog-

ical defects can be described by homotopy groups of

loops that can surround those defects. So for exam-

ple, a monopole in 3 spatial dimensions has to be de-

scribed by π2(X) because it can only be surrounded

by a 2-sphere.

2.2 Homotopy on group manifolds

The determination of homotopy groups is made much

simpler if the topological space one is dealing with

is a group manifold, and even more so a simply con-

nected group manifold. The reason for that is a series

of theorems that I will state without proof or much

explanation, one or both of which can be found in the

already mentioned review by Mermin [3].

The first very useful theorem says that for a sim-

ply connected, continuous group G and any subgroup

H of G the fundamental group of the coset space

π1(G/H) is isomorphic to the quotient group H/H0,

where H0 is the connected component of H containing

the identity, or put simply:

π1(G/H) ' H/H0 (2.5)

So the “only” thing one needs to do to find the fun-

damental group of a parameter space is to find a sim-

ply connected group and its subgroup whose coset is

isomorphic to the parameter space. This sounds com-

pletely abstract and unpractical but is actually com-

pletely opposite and can often be done using simple

symmetry arguments.
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The second theorem concerns the second homotopy

group and states simply that if π2(G) = {e} then:

π2(G/H) ' π1(H) (2.6)

Both stated theorems can be extracted from a more

general theorem that says that the sequence of homo-

morphisms:

. . .→ πn(G)→ πn(G/H)→

→ πn−1(H)→ πn−1(G)→ . . . (2.7)

is a thing called an exact sequence. In such a se-

quence it holds that if in G1 → G2 → G3 → G4

the groups G1 and G4 are trivial (have only the iden-

tity) then the homomorphism between G2 and G3 is

an isomorphism. Applied to (2.7) it tells us that if

πn(G) = πn−1(G) = {e} then:

πn(G/H) ' πn−1(H) (2.8)

As I already pointed out, it seems rather abstract and

unpractical to formulate a parameter space as a sim-

ply connected group or a coset of groups. But actu-

ally it is the most natural thing because a parameter

space is directly related to the reduction of symmetry

of the physical parameter in relation to the symme-

try of the whole physical space. For example, a plane

has SO(2) as its symmetry group. The isotropy sub-

group of SO(2) for a planar spin is just {e} since

any other rotation changes the planar spin. Thus,

the parameter space for a planar spin is isomorphic

to SO(2)/{e} = SO(2) ' S1. This was a trivial ex-

ample. A more complex and persuasive example is

the spin in three dimensions. The whole space has

SO(3) as its symmetry group, and the isotropy sub-

group of SO(3) for a spin is SO(2) because all rota-

tions about the axis of the spin leave it unchanged.

Thus, the parameter space for a spin is isomorphic to

SO(3)/SO(2) which is known to be ' S2.

So basically the only practical obstacle for using the

theorems given in this section for easy calculation

of homotopy groups are the conditions on G being

n-connected (meaning πn(G) = {e}) because they

are generally hard to satisfy (SO(3) is not even sim-

ply connected). However, the condition for simple

connectedness is relatively easy to achieve by taking

the universal covering group of the natural symmetry

groupG since it always exists and is simply connected.

An additional convenience is then given by a theorem

stating that for n ≥ 2 the nth homotopy groups of

a group G and its covering group G̃ are isomorphic.

But even if one manages to find the universal covering

group, which is very often tricky, additional compli-

cations arise from the need to “lift” the isotropy sub-

group H to the appropriate subgroup of the universal

covering group.

A lot more formal and mathematical description of

defects and symmetry with advanced usage of group

theory is given in [4]. The following examples will

show how symmetry groups, group theory and homo-

topy theory are used together to predict and classify

topological defects and give constraints on their dy-

namics.

3 Application in ordered media

The domain of condensed matter physics and ordered

media is the natural intuitive area to study defects

and apply homotopy theory since the order param-

eters are physical quantities one can easily imagine

by vectors, rods and similar familiar objects. We

will mostly be concerned here by continuous media

although media with broken translational symmetry,

those possessing a lattice, have an abundance of de-

fects that are of a topological character. Typical of

those are dislocations and disclinations (figure 3). The

reason why we will not deal mathematically with me-

dia with broken translational symmetry here is be-

cause the mathematics is even more complicated and

unclear. More on that can be found in [3] (section

VIII.).

As already mentioned in the introduction, generation

of defects in continuous media can happen in phase

transitions but also by simple influence of external

forces like bending of a metal bar. Entanglement of

line defects and other interactions, mentioned earlier

with noncommutativity, can in principle have phys-

ical consequences although no materials having that

property have been found so far that I am aware of.

A simple introduction to and overview of the classi-

fication of materials and topological defects in them,

in just a few pages, is given in [5].

Topological defects in materials are usually divided
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Figure 3: (a) a−90◦ disclination, (b) two disclinations
(−90◦ and +90◦) making a (1,1) dislocation in the far
configuration, (c) a (1,0) dislocation

into:

a) monopoles - point defects in 3D described by

π2(R).

b) vortices - point defects in 2D or, equivalently,

line defects in 3D, both described by π1(R).

c) domain walls - plane defects in 3D, but also

lines in 2D or points in 1D. A structure that

separates two distinct parts of the domain and

is thus described by π0(R).

d) textures - those are solutions that are not triv-

ial, uniform configurations and cannot be trans-

formed into one with finite “surgery”, but are

not strictly defects. They are also sometimes

called solitons and are described by π3(R).

What defines a topological defect is that it has influ-

ence in the medium far away from the defect itself,

in other words it can be detected non-locally. This is

plain to see from the use of homotopy theory because

the size of the n-loop doesn’t matter, only the class it

belongs to, so one can detect or determine a defect in

a configuration by taking an arbitrarily large n-loop,

even “at infinity”. This is the reason why textures

are formally not defects. They are defined such that

the parameter takes on the same value everywhere

at infinity, which is why the R3 space is practically

compactified to S3. A configuration as a whole can

then be classified by π3(R) by making the whole of

physical space play the role of the 3-loop from which

a mapping is made to the parameter space R. That

configuration can be non-trivial but it cannot be said

that it possess a defect, more that it is a “defect” by

itself. It is instead said that the configuration has a

certain texture.

The following sections will present typical order pa-

rameters in condensed matter physics and analyze

what kind of topological defects they admit.

3.1 Spins

Perhaps the simplest model of a parameter space is

given by planar spins, which were already mentioned

in the introduction. In this model the spin is repre-

sented by a vector confined to a plane and can thus

be represented by a single angle φ, the mapping from

physical space to parameter space being:

f(~r) = cos (φ(~r)) û+ sin (φ(~r)) v̂ .

It is then obvious that the parameter space is isomor-

phic to S1 and also fairly straightforward to see that

π1(S1) ' Z because you can “wind” a loop around a

circle as many times as you like in any direction and

loops with different “winding numbers” would not be

possible to continuously deform into each other (fig-

ure 4). But what about higher homotopy groups?

To avoid relying on intuition and being able to easily

answer further questions is the reason to use group

manifolds and the associated theorems presented in

section 2.2.

In the case of planar spins the natural group manifold

G is SO(2) and the isotropy subgroup H is trivial.

The universal covering group G̃ of SO(2) is the 1D

translation group T (1) which is isomorphic to R but

then the isotropy subgroup is lifted to:

H̃ = {2πk | k ∈ Z}

because all real numbers φ + 2πk correspond to the

same element of SO(2). Using theorem (2.5) then

gives:

π1(SO(2)) ' π1(T (1)/H̃) ' H̃ ' Z, (3.1)
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Figure 4: (a) uniform configuration, (b) a configura-
tion that can be brought to a uniform one, meaning
winding number 0 and no defects, (c) a defect with
winding number +2

Also the use of (2.8) simply gives the general result:

πn(SO(2)) = {e} (3.2)

for n ≥ 2 since πn−1(Z) = {e} because it is discrete.

So we conclude that planar spins can make only vor-

tices, that the vortices can be labeled by integers and

that, since Z is commutative, two or more vortices

combine into a vortex that is labeled simply by the

sum of their labels (figure 5).

Figure 5: Two +1 defects (left) joining into a single
+2 defect (right).

For the also already mentioned case of ordinary 3D

spins one can also get some results by intuition. For

example, since the parameter space is S2, a sphere,

it is obvious that π1(S2) = {e} because everybody

knows that you cannot “lasso a sphere”. Similarly

one can guess that π2(S2) = Z from the analogy with

π1(S1). But let us use the group-theoretic approach.

As was already explained in section 2.2, the G for

ordinary spins is SO(3) and the isotropy subgroup

H is SO(2). The universal covering group of SO(3)

is the group of unitary 2 × 2 matrices with positive

unit determinant - SU(2), which is commonly found

in physics and the reader may know it is a double

cover of SO(3). The appropriate lift of SO(2) is then

simply to U(1) and since U(1) is connected it imme-

diately follows from (2.5) that:

π1(S2) = π1(SU(2)/U(1)) = U(1)/U(1) = {e}.
(3.3)

Since SU(2) is 2-connected (it can be represented as

a ball) it also follows simply from (2.6) that:

π2(S2) = π2(SU(2)/U(1)) = π1(U(1)) = Z, (3.4)

as expected. We cannot say much about higher ho-

motopy groups so easily because the condition for the

use of (2.8) is not satisfied, that is πn(SU(2)) 6= {e}
for n > 2. That the use of (2.8) would be erroneous is

seen from the fact that using it would give the result:

π3(S2) = π2(U(1)) = {e} when in fact the correct

result is:

π3(S2) = Z (3.5)

To summarize, ordinary spins cannot make vortices

but can make monopoles whose nature is the same as

those of vortices for planar spins. Additionally, there

also exists the possibility of textures, solitonic configu-

rations that are in themselves not defects but prevent

the material from relaxing to the uniform configura-

tion.

3.2 Nematics

Nematics are liquid crystals in the nematic phase

which is the most common of thermotropic liquid crys-

tal phases. Other phases include smectic and choleste-

ric both of which have interesting but more compli-

cated topological features (see table 2 in [4]).

Nematics are basically consisted of rod-shaped mole-

cules that like to align. Their interesting topological

features come from the fact that the orientation of the

molecules doesn’t matter, which enables us to repre-

sent them by headless vectors called directors. The
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“only” thing different from ordinary spins is that the

isotropy subgroup includes rotations by π around axes

perpendicular to the director axis. This makes the

parameter space SO(3)/D∞ ' RP 2 which is the real

projective plane and corresponds to a 2-sphere with

opposite points identified. This matches the intuitive

definition of a director as a headless vector.

In order to use SU(2) instead of SO(3) we need to

find the corresponding lift of D∞. It is made of two

sets of elements connected by a π rotation around an

axis perpendicular to the director axis, for example

g = u(x̂, π):

u(ẑ, θ) = H0 ' SO(2)

u(x̂, π)u(ẑ, θ) = gH0

This results in:

π1(SU(2)/H) ' H/H0 ' Z2 = {0, 1}. (3.6)

which is a known result for π1(RP 2). The conse-

quence of this is that nematics can form vortices, but

only of one kind (figure 6) and whenever two of them

meet they annihilate.

Since S2 is the covering group of RP 2 their higher ho-

motopy groups are the same according to a theorem

mentioned at the end of section 2.2. But this doesn’t

mean that the conclusions about monopoles and tex-

tures in ordinary spins can be completely copied to

nematics. The reason for caution is stated in section

2.1.1 and can intuitively be related with the isotropy

subgroup H having more than one connected compo-

nent. So even though the higher homotopy groups of

H are determined completely by H0, the law of com-

bination of different topological defects is not. One of

the consequences for nematics is that monopoles with

labels +n and −n are topologically the same which

leads to the unusual possibility of a monopole with an

even label 2n separating into two equal n monopoles

and combining back into a defectless configuration.

Another interesting material is the biaxial nematic

which aligns by two axes. It can be imagined as elon-

gated rectangles which are unchanged only by π ro-

tations around the three perpendicular axes, i.e. the

four-element point group D2. It’s parameter space is

Figure 6: A vortex in a nematic

then R ' SO(3)/D2 but to apply the theorems from

section 2.2 we need to use SU(2) and the equivalent

lift of D2 which happens to be the quaternion group

Q (more details and intuition in [3]). The quaternion

group is a discrete group consisted of 8 elements: the

unit element, its negative, 3 “imaginary” units i1, i2

and i3, and their negatives. The imaginary units are

connected by the totally antisymmetric Levi-Civita

tensor via iaib = εabcic. The result is that, by the

theorems of section 2.2, the first and second homo-

topy groups for biaxial nematics are:

π1(R) = π1(SU(2)/Q) = Q (3.7)

π2(R) = π1(Q) = {e} (3.8)

This tells us that monopoles are unable to form, unlike

in normal nematics, and that vortices are determined

by a very special and unexpected group.

What is especially interesting is that Q is obviously

noncommutative so the 8 elements have to be grouped

into conjugacy classes to give topologically distinct

vortices. There are five of those and they define four

different kinds of defects, those that are 2π rotations

and those that are π rotations around the three dis-

tinct axes. The law for the combination of those de-

fects is very peculiar and gives the possibility of a

defect catalyzing the destruction of another defect.

Again, more details can be found in [3] but the point

to be taken is that quite unusual topological defects

appear in real life and it would be very hard, if not im-

possible, to understand them, let alone predict their

existence and behaviour, without the use of homotopy

theory.
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3.3 Superfluid helium-3

Although condensed matter can be very complicated

and exhibit some very peculiar properties, the dis-

covery and subsequent theoretical explanation (BCS

theory etc.) of superfluidity and superconductivity

made it especially hard, probably impossible, for con-

densed matter physicists to use their intuition and

previous experience in predicting and explaining their

behaviour. Both phenomena are described in the fra-

mework of quantum field theory but in a very differ-

ent way and context then the examples of the next

section. The consequence is that the order parame-

ters are unlike anything used so far, completely un-

intuitive and mathematically abstract. Two of them

will be presented here but without any physical mo-

tivation or explanation because the theories are too

complicated.

Superfluid helium is basically the trigger that brought

topologists and homotopy theory to condensed matter

physics because condensed matter physicists couldn’t

cope with it using conventional methods they used

and developed until then. Two isotopes of helium

are superfluid, 3He and 4He, but the more interest-

ing and complicated one is helium-3 which is theo-

retically very similar to superconductors since both

effects occur with fermions. Helium-3 has two super-

fluid phases, the A and B phase, and each has various

regimes that are described by different order parame-

ters. We will deal here with the dipole-locked and the

dipole-free A phase.

The simpler of the two is the dipole-locked A phase

whose order parameter is a complex vector field:

e(~r) = φ̂1(~r) + ıφ̂2(~r) (3.9)

with the constraints: |e|2 = 1 and e · e = 0.

It can be imagined as a pair of orthonormal axes

(φ̂1, φ̂2) at each point of space and it is then easy

to see that its parameter space R can be described

by the full group manifold of SO(3) since no element

of SO(3) but the identity leaves it unchanged. As

usual, we use SU(2) instead of SO(3). The lift makes

the isotropy group become non trivial since the iden-

tity in SO(3) corresponds to both the identity and its

negative in SU(2). The theorems of section 2.2 then

give:

π1(R) = π1(SU(2)/{e,−e}) = Z2 (3.10)

π2(R) = π1({e,−e}) = {e} (3.11)

This seems like the poorest homotopy structure so

far; it allows only one kind of vortices, like the ne-

matics, and no monopoles. However, using the facts

that SO(3) ' RP 3, that S3 is the covering space of

RP 3 and that higher homotopy groups of a space and

its covering space are the same we can conclude that:

π3(R) ' π3(S3) = Z (3.12)

which means that the dipole-locked A phase of helium-

3 admits an infinite variety of textures. Examples of

such textures are the Anderson-Toulouse and Mermin-

Ho vortices as well as the Shankar monopole (see [1],

section 4.10).

The dipole-free A phase has an order parameter

that doesn’t seem a lot more complicated but results

in a much richer and complicated topology. The order

parameter is defined as:

A(~r) = n̂(~r)e(~r) (3.13)

where e is the same as in (3.9) and n̂ is an uncoupled

unit vector.

The natural first choice for the parameter space would

be just the direct product of the parameter spaces for

each of the separate components, which is:

(SO(3)/SO(2))×SO(3), or equivalently SO(3)×SO(3)

with the isotropy subgroup SO(2)×1. But care must

be taken of the fact that if both components simulta-

neously switch signs it amounts to no change at all.

So alongside (R(ẑ, θ), 1) transformations of the form

(R(û, π), R(ẑ, π)) = (R(x̂, π)R(ẑ, θ), R(ẑ, π)) also be-

long to the isotropy subgroup. To understand the

elements of the isotropy group one can imagine the

SO(3)×SO(3) space as two coordinate systems where

the first is aligned with the ẑ-axis pointing in the n̂

direction and the second aligned such that the ẑ-axis

is perpendicular to the (φ̂1, φ̂2) plane. The direction

of û is perpendicular to the ẑ-axis and makes an angle

θ with the x̂-axis.

To use the theorems of section 2.2 we need to use

SU(2) × SU(2) as the group manifold G and lift the

9



isotropy subgroup accordingly. This results in four

sets of isotropy transformations that can be related

to an element g = (u(x̂, π), u(ẑ, π)) as left cosets:

(u(ẑ, θ), 1) = H0 ' SO(2)

(u(ẑ, θ),−1) = g2H0

(u(x̂, π)u(ẑ, θ), u(ẑ, π)) = gH0

(u(x̂, π)u(ẑ, θ),−u(ẑ, π)) = g3H0

Using theorems (2.5) and (2.6) then leads us to the

following results:

π1(G/H) ' H/H0 ' Z4 (3.14)

π2(G/H) ' π1(H) ' π1(SO(2)) ' Z. (3.15)

This leads to the conclusion that there can be three

different types of vortices in the dipole-free A phase

of helium-3 and that they are nicely behaved, as far

as topology is concerned. But, as with nematics, one

should not be quick to draw conclusions on the be-

haviour of monopoles and textures since the isotropy

subgroup contains more than one connected compo-

nent. In fact, monopoles have a similar property to

the ones in nematics (more on that can be found in

[3]).

4 Application in quantum field

theory

In quantum field theory the quantum field φ is de-

scribed by a Lagrangian density from which the field

dynamics equations and the energy of the field can be

derived. The Lagrangian always contains a potential

V (φ) that usually includes the mass and interaction

terms. The field always tends to the minimum of that

potential in every point of physical space and when

the field is in that minimum we say that it is in the

vacuum state.

The interesting thing that can happen is that there

can be more than one available vacuum, meaning that

there exists more than one configuration of the field

with the same minimum of the potential and no pref-

erence for the field to be in any particular one. In that

case we have a “vacuum manifold” and the vacuum

state can be viewed as an order parameter. One sim-

ple case is the single complex field with the following

Lagrangian density:

L = ∇µφ∇µφ∗ − V = ∇µφ∇µφ∗ −
λ

4

(
|φ|2 − v2

)2
.

(4.1)

The potential is shown in figure 7 6 and the vacuum

manifold is the circle of points for which |φ|2 = v2.

One can view this as a broken symmetry, the same as

in the ordered media case. For example, in the case

of the field described by (4.1) the full internal sym-

metry group is obviously U(1) and the isotropy sub-

group for a particular vacuum state is just the identity

since all other “rotations” change the vacuum state.

Thus, as before, the vacuum manifold is U(1)/1 and

it’s topological properties are the same as for planar

spins. The quantum field can, of course, have more

Figure 7: A “Mexican hat” potential for a complex
quantum field resulting in a manifold of vacua

internal degrees of freedom with complicated symme-

try groups and potentials that break them into highly

non-trivial vacuum manifolds. This opens the possi-

bility for complicated topological defects not readily

accessible by intuition and of possible great impor-

tance for elementary particle physics and cosmology.

Homotopy theory tells us only about the possibili-

ties of topological defects, there are other conditions

that affect their creation or even the possibility of

their existence. In fact, energy considerations tell us

that the existence of topological defects is impossible

for theories with Lagrangians of the form like (4.1)

in more than one spatial dimension (Derrick’s theo-

rem). What “saves” our standard quantum field the-

6This figure is taken from [6] which is an introduction to
and an overview of QFT I highly recommend. It contains even
short chapters on topology and its applications to QFT like
anyons, Chern-Simons theory, ’t Hooft-Polyakov monopole and
instantons.
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ories from Derrick’s theorem is local gauge invariance

instead of global symmetries. The shift to local gauge

symmetry groups changes nothing as far as homotopy

is concerned which means that our standard quan-

tum field theories admit topological defects, at least

in principle. Another question is the creation and

energy content of eventual topological defects in the

universe and this is were cosmology comes into play.

The theory of the hot big bang says that the universe

was once very hot and dense and that it expanded and

cooled ever since. It also says that when it was very

hot that the internal symmetries of the quantum field

were not broken and that as it cooled the universe

underwent a second-order phase transition that broke

the internal symmetries of the quantum field. For ex-

ample, the standard Landau theory would expand the

potential of the (4.1) Lagrangian with a temperature

dependent part CT 2|φ|2 + . . . [7] making it:

V (φ) =

(
CT 2 − λv2

2

)
|φ|2 +

λ

4
|φ|4 + const.

This would give a critical temperature of T 2
c = λv2

2C

over which there would exist only a single vacuum at

φ = 0 and under which there would exist a vacuum

manifold for |φ|2 = v2
(

1− T 2

T 2
c

)
→ v2. This approach

can be easily transferred to quantum fields with a lot

more complicated internal structure and gauge sym-

metries, such as those of the standard model.

The way that topological defects would occur in case

of such a scenario is described by the Kibble mech-

anism. At the point of the phase transition of the

universe causal effects between different areas of the

universe are limited by the speed of light and the age

of the universe. The length scale is that of the in-

verse Hubble constant so we can roughly put that

lcor ∼ H−1. This means that areas further apart than

lcor couldn’t have had causal effect on each other and

have no reason to have the same vacuum, since all

vacua are equally likely. This means that the sponta-

neous symmetry breaking resulted in different vacua

around the universe that, due to energy considera-

tions, settled into the uniform configuration locally

and expanded. But since all vacua are equally likely

and uncorrelated it should have happened that some

topologically non-trivial configurations occurred that

can’t be settled to the uniform one. This is schemat-

ically depicted in figure 8.

Figure 8: The Kibble mechanism leading to a topolog-
ically uniform configuration (left) and a vortex defect
(right) [8]

The standard model of physics (SM) is a quantum

field theory with a quantum field that has two com-

plex components and (SU(3)×)SU(2) × U(1) as its

internal gauge symmetry group. The theory says that

the field goes through spontaneous symmetry break-

ing that breaks the SUL(2)×UY (1) gauge symmetry

of the electroweak force to the Uem(1) gauge sym-

metry of the electromagnetic force through the Higgs

mechanism giving masses to the W±, Z0 and H0

bosons. The resulting vacuum manifold cannot be

calculated as easily as (SU(2)×U(1))/U(1) ' SU(2)

because it depends on the embedding of Uem(1) into

the higher symmetry space, which you may know is

not trivial (Weinberg angle etc.). However, it can be

shown [9] that the resulting vacuum manifold indeed

is SU(2) in the theory of the Higgs SU(2) doublet

field. Since the group manifold of SU(2) is isomor-

phic to S3 it follows that the homotopy groups for

the vacuum manifold M of SM are:

π1(M) ' {e} (4.2)

π2(M) ' {e} (4.3)

π3(M) ' Z (4.4)

This means that the SM doesn’t admit cosmic strings

or monopoles. However, it is postulated that there

exists a more fundamental Grand Unification The-

ory (GUT) with a higher gauge symmetry group (for

example SU(5)) that breaks down to the SM one

in a similar way to which the electroweak symmetry

breaks to the electromagnetic. Most of those GUT’s

admit monopoles as stable configurations, which is

appealing and desired for some reasons but also gen-
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erates some additional problems.

4.1 ’t Hooft - Polyakov monopole

The simplest gauge quantum field theory that admits

monopoles is the Georgi-Glashow model with a quan-

tum field having three real components and a local

SU(2) gauge symmetry. Its Lagrangian density is

given by [6][8][10]:

L =
1

2
(Dµφ

a)(Dµφa)− λ

4

(
φ2 − v2

)2 − 1

4
GaµνG

µν
a .

The covariant derivative Dµ and the gauge field tensor

Gaµν are given by the three gauge fields W a
µ and the

coupling constant q through the following relations:

Dµ = ∂µ + qεabcW a
µ ,

Gaµν = ∂µW
a
ν − ∂νW a

µ + qεabcW b
µW

c
ν .

The vacuum state is clearly achieved for φ2 = v2

which, considering that φ has three real components,

makes the vacuum manifold M ' S2. This can also

be seen by breaking the symmetry choosing arbitrar-

ily the vacuum corresponding to:

φ =

 0

0

v + h(x)

 (4.5)

Following the calculations through shows that gauge

field combinations W±µ = 1√
2
(W 1

µ±ıW 2
µ) acquire mass

mW = qv, that the Higgs field h acquires mass mh =√
2λv and that the gauge field W 3

µ remains massless

and gives the theory a U(1) gauge symmetry that can

be identified with electromagnetism by W 3
µ ≡ Aµ.

This means that the vacuum manifold should beM'
SO(3)/U(1) ' S2 which is consistent with our first

conclusion. As we already know, π2(S2) = Z so this

theory admits monopoles, an infinite variety of them

even.

The simplest is the ’t Hooft-Polyakov monopole which

belongs to the class with winding number 1 and is

also called “the hedgehog solution” since the phase

of the vacuum points in the radial direction at each

point of space far from the monopole. The form of

the quantum field for such a solution is not hard to

guess, it is just:

φ = v (1− f(r)) r̂

where f(r →∞) = 0 and (1−f(r → 0)) ∝ r. The in-

teresting thing about this solution is that it links spa-

tial and internal dimensions, because r̂ “lives” in the

physical space and φ “lives” in the three-dimensional

internal space and those two spaces are generally un-

related.

The bigger problem and the reason why finding this

solution was not trivial is finding the gauge fields that

keep this solution finite in energy. They correspond

to:

W a
0 = 0

W a
i =

1− a(r)

qr
εaij r̂j

where a(r →∞) = 0 and (1− a(r → 0)) ∝ r2.

In the case of a uniform vacuum chosen in (4.5) one

can check to see that the electromagnetic tensor is

given by the third component of the field tensor and

that the others vanish: Fµν = G3
µν . It is then easy

to generalise this to any uniform orientation of the

vacuum state since the physics shouldn’t depend on

the choice of the vacuum:

Fµν =
φa

|φ|
·Gaµν .

Using this equation with the fields of the monopole

configuration gives:

Fij = − 1

qr3
εijkr̂k

with all other elements equal to 0. This means that

there is no electric field, only a magnetic field which

is equal to:

~B =
1

q

r̂

r2
. (4.6)

This is clearly a field that a magnetic monopole would

produce, completely analogous to the field of an elec-

tric monopole such as an electron. If we would extend

the Maxwell equations with a magnetic monopole,

making the second equation:

∇B = [µ0]ρm,

then for a monopole with magnetic charge qm the field
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would be:
~B =

[µ0]qm
4π

r̂

r2
. (4.7)

Comparing (4.7) with the monopole solution (4.6) we

see that the magnetic monopole charge of the ’t Hooft-

Polyakov monopole (ignoring µ0 and ε0) is:

qm =
4π

q
→ 2h

q
(4.8)

where the second result is after restoring appropriate

factors of ~. One should keep in mind that q is here

the coupling constant of the electromagnetic gauge

theory which is the quantum of electric charge.

The reason why this result is very interesting, and

also why one would like a GUT to have monopole

solutions like this, is a classical result by Dirac that

says that if we extend Maxwell’s equations with mag-

netic monopoles the magnetic charge must obey the

relation:

qm = n
h

q
. (4.9)

We see that the ’t Hooft-Polyakov monopole indeed

obeys that relation, with n = 2, which is a stunning

fact considering how vastly different the theories the

two results were obtained with are. The derivation of

the condition in (4.9) and more about the connection

of the Dirac and ’t Hooft-Polyakov monopoles can be

found in section 10.4 of [10].

What the classical result doesn’t say is anything else

about the hypothetical magnetic monopole, it’s just

added to the Maxwell’s equations by hand and all its

other physical properties, like its mass, are completely

arbitrary. The ’t Hooft-Polyakov monopole, on the

other hand, has all of its other properties determined

by the theory it results from. For example, in the sim-

plest model presented here the mass of the monopole

is estimated at mM ≈ mW /α ≈ 137mW ≈ 11 TeV.

This is around 7 orders of magnitude heavier than the

electron. In GUTs, however, the monopoles usually

have masses of the order of 1017 GeV, which is of the

order of micrograms, and are formed in a phase tran-

sition that occurs at a critical temperature of roughly

1016 GeV. This results in “the monopole problem”

which states that standard GUTs lead via the Kibble

mechanism to an overabundance of monopoles, both

in number and in energy density, which is completely

inconsistent with current observational knowledge of

our universe [8]. This “monopole problem” is one of

the main reasons why the inflation mechanism, which

seems to provide a way around it for some GUTs at

least, was invented.

4.2 Cosmic strings

The simplest model having a vacuum manifold with

π1(M) 6= 0 after symmetry breaking and so allowing

1D topological defects in 3D space is the abelian Higgs

model. It is basically the Lagrangian given by (4.1)

extended with a U(1) local gauge field. The simplest

such topological defect in that model is an infinite

straight string. It can be described by the following

configurations of the quantum and gauge fields:

φ = v (1− f(ρ)) eiNθ (4.10)

Ai = − N

qρ2
(1− a(ρ)) εijr

j ; i, j ∈ {1, 2} (4.11)

where ρ is the distance from the string, the z-axis is

pointing in the direction of the string and the f and

a functions have appropriate asymptotic behaviour:

f(ρ→∞) = 0 , f(ρ→ 0)) = 1 ,

a(ρ→∞) = 0 , a(ρ→ 0)) = 1 .

In the center of the string the quantum field is ob-

viously not in a vacuum state which means that the

string carries energy. For the simplest abelian Higgs

model used here the estimated tension (energy per

unit length) of the string is µ ≈ πv2 and its thickness

is ρ ≈ 1/qv which is of the order of 1 fm. The size and

energy of such strings make them very interesting to

cosmology because of their potential implications.

An interesting property of the (4.10, 4.11) field con-

figurations is that the string core carries a magnetic

flux and that flux is quantized:∫
~BdS =

∮
Aθdθ =

2π

q
N .

This same property is found in vortices in type II

superconductors that “leak” magnetic flux when the

external magnetic field exceeds a critical value. Their

mathematical origin is similar and in superconductors

they are called Abrikosov vortices while in cosmology

they are called Abrikosov-Nielsen-Olesen strings, or

simply cosmic strings.

Cosmic strings can be open, horizon-sized objects or
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finite-sized, closed loops and both varieties are pre-

dicted to be generated at a phase transition according

to the Kibble mechanism, irrespective of the details

of the theory that supports them.

Straight strings wouldn’t gravitate but would affect

the geometry of spacetime considerably. The geome-

try around them would be locally flat but with a so-

called deficit angle ∆θ ≈ 8πGµ that would make the

full circle around the string be 2π−∆θ. The effects of

that would be the creation of double images and non-

Gaussian distortions of the CMB. The observations of

the CMB thus put a bound on the tension of horizon-

sized cosmic strings at µ ≤ (0.7 ·1016 GeV)2. Another

effect would be the compression of dust in wakes of

moving cosmic strings which could have perhaps gen-

erated seeds for structure formation. Some observed

1D structures in the universe could be explained in

that way but are inconsistent with some others. Gen-

erally, the hypothesis cannot be easily dismissed.

Horizon-sized strings needn’t be straight and those

with “ripples” and singularities like kinks and cusps

would gravitate and dissipate their energy through

gravitational waves which could also be detected. Ad-

ditionally, such irregular strings could generate smaller

closed strings by self-intersection.

Closed strings, if they existed, would gravitate and

dissipate their energy through gravitational waves.

As it dissipates energy a closed string would get ever

smaller and when its radius would become as small as

its thickness it would look like a high-energy particle.

Such a particle-like topological defect would, in the

simple abelian Higgs theory, have a mass similar to

the monopole but would, unlike a monopole, have a

completely contained magnetic flux and would inter-

act only gravitationally making it a possible WIMP.

Although the standard model doesn’t allow cosmic

strings various GUTs might and different varieties

of cosmic strings, but with very similar properties,

are allowed in various string and superstring theories.

This, coupled with the numerous possible fundamen-

tal consequences the existence of cosmic strings would

have for our universe, makes them a very interesting

topic of study. More details about the various cos-

mological consequences of cosmic strings, along with

some calculations, can be found in [8].

4.3 Kinks and walls

The breaking of symmetry can, in principle, also lead

to a disconnected vacuum manifold, a manifold with

π0(M) 6= 0. Such a theory would allow for the exis-

tence of topological defects called domain walls which

would present a boundary between two parts of space

with different vacua. The most simple example of

such a theory is a single scalar field φ with the follow-

ing Lagrangian:

L =
1

2
(∂µφ)2 − λ

4

(
v2 − φ2

)2
(4.12)

which obviously has two possible vacua: φ(x) = ±v.

If we consider only one spatial dimension a domain

wall is usually called a kink, the reason for which is

clear when looking at figure 9. A static kink solution

can be easily constructed by any function with the

desired asymptotic behaviour, for example:

φ(x) = v tanh
(x
l

)
; l2 =

2

λv2
. (4.13)

Since the field is not everywhere in a vacuum state a

kink carries energy, but that energy is localized in a

region of width l. The energy is easily calculated and

Figure 9: A “kink” - a domain wall in one dimension

is finite. The given solution can be trivially extended

to two and three spatial dimensions which would pre-

sume a straight line or a flat plane as the boundary

between domains. This, of course, doesn’t have to be

the case but if the wall is not strongly curved it is a

good approximation.

The cosmological consequences of horizon-sized do-

main walls would be considerable and certain condi-

tions can be constructed from existing observations.

Simple energy density considerations already give an

unlikely satisfiable boundary of surface energy density

η ≤ (10GeV)3 given the usual symmetry breaking en-
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ergy scales for standard model extensions. An addi-

tional likely effect of a domain wall would be that it

anti-gravitates which would have a big effect on CMB.

The CMB observations thus put an even tighter upper

bound on the surface energy density of a horizon-sized

domain wall. These results are the reason why the

topological possibility of domain walls is undesired in

theories that extend the standard model.

4.4 Textures and other wild beasts

The same as in ordered media, textures are possible,

defectless configurations of the vacuum if the vacuum

manifold has a non-trivial third homotopy group. In

quantum field theories of the kind we discussed so far

they are also created by the Kibble mechanism dur-

ing a symmetry breaking phase transition and they

are energetically unstable. In broken gauge theories

textures relax by emitting Nambu-Goldstone bosons

and they decay too fast to still be present. Their

effect could be indirectly seen through density per-

turbations in the early universe reflected in the CMB

but so far observations are inconsistent with textures

being a relevant factor [8].

Another kind of a topological defect that depends on

the third homotopy group is an instanton. Instan-

tons are solutions that are localised both in space

and time and they are studied on the four-dimensional

Euclidean space (after Wick-rotating the time dimen-

sion) which is why the third homotopy group is rele-

vant and the vacuum manifold can facilitate configu-

rations with defects.

Instantons are too complicated, both mathematically

and physically, to go into any more depth here. They

are mentioned only to point out to the reader that

they are possible because of non-trivial topology of

the vacuum manifold making them also topological

defects. A very elementary introduction to instan-

tons with some intuitive explanations and elementary

calculations can be found in the last chapter of [6] and

a bit more mathematically involved introduction can

be found in section 10.5 of [10].

The last kind of topological defects that I will men-

tion in this essay are the so-called hybrid topolog-

ical defects. They are combinations of defects de-

scribed so far and are hypothetically possible if a the-

ory went through multiple symmetry breaking phase

transitions where different kinds of allowed defects

were produced at each transition. Examples of such

exotic topological structures are fleece which are cos-

mic strings that end on domain walls, and necklaces

which are cosmic strings containing monopoles [8].

5 Conclusion

Physicists dealing with condensed matter have long

ago realised the possibility of defects in materials and

managed to describe them and deal with them with-

out using formal mathematics from topology and ho-

motopy theory. Modern physics has, however, given

us theories that are both mathematically and in the

space, time and energy scales they describe far from

the possible grasp of our intuition. It is that circum-

stance that brought topology and homotopy theory to

condensed matter physics, but they have since proven

indispensable for the accurate and systematic expla-

nation and prediction of the existence and the dy-

namics of topological defects in even classical ordered

media.

We have also seen that quantum field theory often

gives topologically rich vacuum manifolds. Homotopy

theory has here also proven indispensable and has re-

vealed the possibility of a variety of topological defects

with interesting properties existing in our universe.

The systematic exploration of those possibilities us-

ing methods from topology can tell us what to look

for to confirm the theories we have but also what we

should expect of the theories that are candidates for

their successors.

Homotopy theory and topology in general are obvi-

ously a necessary tool for modern physics if all impli-

cations of the mathematically complicated physical

theories are to be understood and especially if those

theories are to be meaningfully applied to the totality

of our universe.
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